Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(35): 13924-13932, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35993886

ABSTRACT

Polycrystalline LiMo8O10 was prepared in a sealed Mo crucible at 1380 °C for 48 h using the conventional high-temperature solid-state method. The polar tetragonal crystal structure (space group I41md) is confirmed based on the Rietveld refinement of powder neutron diffraction and 7Li/6Li solid-state NMR. The crystal structure features infinite chains of Mo4O5 (i.e., Mo2Mo4/2O6/2O6/3) as a repeat unit containing edge-sharing Mo6 octahedra with strong Mo-Mo metal bonding along the chain. X-ray absorption near-edge spectroscopy of the Mo-L3 edge is consistent with the formal Mo valence/configuration. Magnetic measurements reveal that LiMo8O10 is paramagnetic down to 1.8 K. Temperature-dependent resistivity [ρ(T)] measurement indicates a semiconducting behavior that can be fitted with Mott's variable range hopping conduction mechanism in the temperature range of 215 and 45 K. The ρ(T) curve exhibits an exponential increase below 5 K with a large ratio of ρ1.8/ρ300 = 435. LiMo8O10 shows a negative field-dependent magnetoresistance between 2 and 25 K. Heat capacity measurement fitted with the modified Debye model yields the Debye temperature of 365 K.

2.
ACS Appl Mater Interfaces ; 13(1): 836-847, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33216550

ABSTRACT

We have directly written nanoscale patterns of magnetic ordering in FeRh films using focused helium-ion beam irradiation. By varying the dose, we pattern arrays with metamagnetic transition temperatures that range from the as-grown film temperature to below room temperature. We employ transmission electron microscopy, X-ray diffraction, and temperature-dependent transport measurements to characterize the as-grown film, and magneto-optic Kerr effect imaging to quantify the He+ irradiation-induced changes to the magnetic order. Moreover, we demonstrate temperature-dependent optical microscopy and conductive atomic force microscopy as indirect probes of the metamagnetic transition that are sensitive to the differences in dielectric properties and electrical conductivity, respectively, of FeRh in the antiferromagnetic (AF) and ferromagnetic (FM) states. Using density functional theory, we quantify strain- and defect-induced changes in spin-flip energy to understand their influence on the metamagnetic transition temperature. This work holds promise for in-plane AF-FM spintronic devices, by reducing the need for multiple patterning steps or different materials, and potentially eliminating interfacial polarization losses due to cross material interfacial spin scattering.

3.
Phys Rev B ; 100(2)2019 Jul.
Article in English | MEDLINE | ID: mdl-38845604

ABSTRACT

A metamaterial approach is capable of drastically increasing the critical temperature, T c , of composite metal-dielectric superconductors as demonstrated by the tripling of T c that was observed in bulk Al-Al2O3 coreshell metamaterials. A theoretical model based on the Maxwell-Garnett approximation provides a microscopic explanation of this effect in terms of electron-electron pairing mediated by a hybrid plasmon-phonon excitation. We report an observation of this excitation in Al-Al2O3 core-shell metamaterials using inelastic neutron scattering. This result provides support for this mechanism of superconductivity in metamaterials.

4.
Sci Rep ; 6: 34140, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658850

ABSTRACT

One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature TC in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar TC enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors.

5.
Sci Rep ; 5: 15777, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26522015

ABSTRACT

Recent experiments have shown the viability of the metamaterial approach to dielectric response engineering for enhancing the transition temperature, Tc, of a superconductor. In this report, we demonstrate the use of Al2O3-coated aluminium nanoparticles to form the recently proposed epsilon near zero (ENZ) core-shell metamaterial superconductor with a Tc that is three times that of pure aluminium. IR reflectivity measurements confirm the predicted metamaterial modification of the dielectric function thus demonstrating the efficacy of the ENZ metamaterial approach to Tc engineering. The developed technology enables efficient nanofabrication of bulk aluminium-based metamaterial superconductors. These results open up numerous new possibilities of considerable Tc increase in other simple superconductors.

6.
J Am Chem Soc ; 135(7): 2748-58, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23350732

ABSTRACT

We present the structure of Ln(30)Ru(4+x)Sn(31-y) (Ln = Gd, Dy) and the anisotropic resistivity, magnetization, thermopower, and thermal conductivity of single crystal Ln(30)Ru(4+x)Sn(31-y) (Ln = Gd, Tb). Gd(30)Ru(4.92)Sn(30.54) crystallizes in a new structure-type with space group Pnnm and dimensions of a = 11.784(1) Å, b = 24.717(1) Å, and c = 11.651(2) Å, and V = 3394(1) Å(3). Magnetic anisotropy and highly anisotropic electrical transport behavior were observed in the single crystals of Gd(30)Ru(4.92)Sn(30.54) and Tb(30)Ru(6)Sn(29.5). Additionally, the lattice thermal conductivity of Tb(30)Ru(6)Sn(29.5) is quite low, and a comparison is made to other Sn-containing compounds.

7.
J Am Chem Soc ; 134(31): 12998-3009, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22849326

ABSTRACT

New distorted variants of the cubic BaHg11 structure type have been synthesized in Ga flux. Multiple phases of CePd3+xGa8-x, which include an orthorhombic Pmmn structure (x = 3.21(2)), a rhombohedral R3m structure (x = 3.13(4)), and a cubic Fm3m superstructure (x = 2.69(6)), form preferentially depending on reaction cooling rate and isolation temperature. Differential thermal analysis and in situ temperature-dependent powder X-ray diffraction patterns show a reversible phase transition at approximately 640 °C between the low temperature orthorhombic and rhombohedral structures and the high temperature cubic superstructure. Single crystal X-ray diffraction experiments indicate that the general structure of BaHg11, including the intersecting planes of a kagomé-type arrangement of Ce atoms, is only slightly distorted in the low temperature phases. A combination of Kondo, crystal electric field, and magnetic frustration effects may be present, resulting in low temperature anomalies in magnetic susceptibility, electrical resistivity, and heat capacity measurements. In addition to CePd3+xGa8-x, the rare earth analogues REPd3+xGa8-x, RE = La, Nd, Sm, Tm, and Yb, were successfully synthesized and also crystallize in one of the lower symmetry space groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...