Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 22(9): 100632, 2023 09.
Article in English | MEDLINE | ID: mdl-37586548

ABSTRACT

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.


Subject(s)
Myeloid-Derived Suppressor Cells , Mice , Humans , Animals , Myeloid-Derived Suppressor Cells/metabolism , High-Throughput Screening Assays , Proteome/metabolism , Proteomics , Reactive Oxygen Species/metabolism
2.
Sci Transl Med ; 11(478)2019 02 06.
Article in English | MEDLINE | ID: mdl-30728286

ABSTRACT

Treatment with immune checkpoint inhibitors targeting programmed death receptor-1 (PD-1) or programmed death ligand-1 (PD-L1) is effective in many cancer types. Tumors harboring specific mutations modulate antitumor immune responses through the PD-1/PD-L1 axis, and this should be taken into account when designing rational combinatory treatments.


Subject(s)
B7-H1 Antigen/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , B7-H1 Antigen/genetics , Genes, Tumor Suppressor , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Oncogenes , Signal Transduction
3.
Sci Transl Med ; 10(429)2018 02 21.
Article in English | MEDLINE | ID: mdl-29467301

ABSTRACT

Recent evidence has revealed that oncogenic mutations may confer immune escape. A better understanding of how an oncogenic mutation affects immunosuppressive programmed death ligand 1 (PD-L1) expression may help in developing new therapeutic strategies. We show that oncogenic JAK2 (Janus kinase 2) activity caused STAT3 (signal transducer and activator of transcription 3) and STAT5 phosphorylation, which enhanced PD-L1 promoter activity and PD-L1 protein expression in JAK2V617F-mutant cells, whereas blockade of JAK2 reduced PD-L1 expression in myeloid JAK2V617F-mutant cells. PD-L1 expression was higher on primary cells isolated from patients with JAK2V617F-myeloproliferative neoplasms (MPNs) compared to healthy individuals and declined upon JAK2 inhibition. JAK2V617F mutational burden, pSTAT3, and PD-L1 expression were highest in primary MPN patient-derived monocytes, megakaryocytes, and platelets. PD-1 (programmed death receptor 1) inhibition prolonged survival in human MPN xenograft and primary murine MPN models. This effect was dependent on T cells. Mechanistically, PD-L1 surface expression in JAK2V617F-mutant cells affected metabolism and cell cycle progression of T cells. In summary, we report that in MPN, constitutive JAK2/STAT3/STAT5 activation, mainly in monocytes, megakaryocytes, and platelets, caused PD-L1-mediated immune escape by reducing T cell activation, metabolic activity, and cell cycle progression. The susceptibility of JAK2V617F-mutant MPN to PD-1 targeting paves the way for immunomodulatory approaches relying on PD-1 inhibition.


Subject(s)
B7-H1 Antigen/metabolism , Hematologic Neoplasms/metabolism , Janus Kinase 2/metabolism , Myeloproliferative Disorders/metabolism , Animals , B7-H1 Antigen/genetics , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Transformation, Neoplastic , Hematologic Neoplasms/genetics , Humans , Janus Kinase 2/genetics , K562 Cells , Mice , Myeloproliferative Disorders/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Tumor Cells, Cultured
4.
Blood ; 127(15): 1930-9, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26837700

ABSTRACT

Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-ß/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo.


Subject(s)
Caveolin 1/metabolism , Caveolin 1/physiology , Gene Expression Regulation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/cytology , Caveolin 1/genetics , Cell Differentiation , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphorylation , Prospective Studies , Signal Transduction , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta/metabolism , Transplantation, Homologous
5.
Blood ; 126(1): 103-12, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25972159

ABSTRACT

The successful treatment of acute leukemias with allogeneic hematopoietic cell transplantation (allo-HCT) is limited by acute graft-versus-host disease (GVHD). Because microRNA-155 (miR-155) regulates activation of the innate immune system, we aimed to determine its function in dendritic cells (DCs) during GVHD in an experimental model. We observed that miR-155 deficiency of the recipient led to improved survival, reduced serum levels of proinflammatory cytokines, and lower GVHD histopathology scores. In addition, miR-155(-/-) bone marrow chimeric mice receiving allo-HCT and miR-155(-/-) DCs showed that miR-155 deficiency in the DC compartment was responsible for protection from GVHD. Activated miR-155(-/-) DCs displayed lower expression of various purinergic receptors and impaired migration toward adenosine triphosphate (ATP). Microarray analysis of lipopolysaccharide/ATP-stimulated miR-155(-/-) DCs revealed mitogen-activated protein kinase pathway dysregulation and reduced inflammasome-associated gene expression. Consistent with this gene expression data, we observed reduced ERK activation, caspase-1 cleavage, and IL-1ß production in miR-155(-/-) DCs. The connection between miR-155 and inflammasome activation was supported by the fact that Nlrp3/miR-155 double-knockout allo-HCT recipient mice had no increased protection from GVHD compared with Nlrp3(-/-) recipients. This study indicates that during GVHD, miR-155 promotes DC migration toward sites of ATP release accompanied by inflammasome activation. Inhibiting proinflammatory miR-155 by antagomir treatment could help reduce this complication of allo-HCT.


Subject(s)
Cell Movement , Dendritic Cells/immunology , Graft vs Host Disease/genetics , Inflammasomes/metabolism , MicroRNAs/genetics , Animals , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Dendritic Cells/physiology , Female , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Inflammasomes/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Severity of Illness Index , Transplantation, Homologous/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...