Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Invest Ophthalmol Vis Sci ; 65(2): 28, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38381414

ABSTRACT

Purpose: There are numerous reports of a distinctive maculopathy in adults exposed to pentosan polysulfate sodium (PPS), a drug prescribed to treat bladder discomfort associated with interstitial cystitis. We tested whether PPS treatment of mice injures RPE or retina to provide insight into the etiology of the human condition. Methods: Mice were fed PPS-supplemented chow over 14 months. RPE and retinal function was assessed by electroretinography (ERG) regularly. Following euthanasia, one eye was used for sagittal sectioning and histology, the contralateral for RPE flatmounting. ZO-1 positive RPE cell borders were imaged using confocal microscopy and cell morphology was analyzed using CellProfiler. Results: After 10 months of PPS treatment, we observed diminution of mean scotopic c-wave amplitudes. By 11 months, we additionally observed diminutions of mean scotopic a- and b-wave amplitudes. Analysis of flatmounts revealed altered RPE cell morphology and morphometrics in PPS-treated mice, including increased mean en face cell area and geometric eccentricity, decreased RPE cell solidity and extent, and cytosolic translocation of alpha-catenin, all markers of RPE cell stress. Sex and regional differences were seen in RPE flatmount measures. Shortened photoreceptor outer segments were also observed. Conclusions: PPS treatment reduced RPE and later retina function as measured by ERG, consistent with a primary RPE injury. Post-mortem analysis revealed extensive RPE pleomorphism and polymegathism and modest photoreceptor changes. We conclude that PPS treatment of mice causes slowly progressing RPE and photoreceptor damage and thus may provide a useful model for some retinal pathologies.


Subject(s)
Pentosan Sulfuric Polyester , Retinal Diseases , Adult , Humans , Animals , Mice , Retina , Electroretinography , Causality
2.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37541763

ABSTRACT

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Subject(s)
Chemical Warfare Agents , Mustard Gas , Rats , Animals , Mustard Gas/toxicity , Mesna/pharmacology , Mesna/therapeutic use , Antidotes/pharmacology , Antidotes/therapeutic use , Lung , Sodium , Chemical Warfare Agents/toxicity
4.
Phys Ther ; 103(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37245217

ABSTRACT

OBJECTIVE: Research on burnout among physical therapists and occupational therapists in the context of the coronavirus disease 2019 (COVID-19) pandemic is limited. Resilience may be important for reducing burnout and promoting well-being among rehabilitation specialists, especially during periods of elevated occupational demand and stress. The purpose of this study was to investigate experiences of burnout, COVID-19 pandemic-related distress, and resilience among physical therapists and occupational therapists during the first year of the COVID-19 pandemic. METHODS: Physical therapists and occupational therapists working in a university-affiliated health system were invited to complete an online survey assessing burnout, COVID-19 pandemic-related distress, state- and trait-like resilience, physical activity, sleep disturbance, and financial concerns. Multiple linear regressions were used to examine variables associated with burnout as well as the contribution of specific aspects of resilience to burnout. RESULTS: Greater COVID-19 pandemic-related distress was associated with greater emotional exhaustion and depersonalization, whereas state-like resilience at work was associated with lower emotional exhaustion, greater personal accomplishment, and lower depersonalization. Analyses examining the impact of specific components of resilience at work suggested that several components are associated with less burnout, with finding one's calling being particularly relevant for all 3 domains of burnout. CONCLUSION: Symptoms of burnout were reported by many physical therapists and occupational therapists. COVID-19-related distress and state-like resilience at work, particularly the perception of finding one's calling, emerged as consistently being associated with burnout in the context of the COVID-19 pandemic. IMPACT: These findings can inform the development of interventions to reduce burnout among physical therapists and occupational therapists amid the continuing COVID-19 pandemic.


Subject(s)
Burnout, Professional , COVID-19 , Physical Therapists , Humans , Occupational Therapists , Physical Therapists/psychology , Pandemics , COVID-19/epidemiology , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Surveys and Questionnaires
5.
Gait Posture ; 100: 103-106, 2023 02.
Article in English | MEDLINE | ID: mdl-36508883

ABSTRACT

BACKGROUND: Bradykinesia and postural instability contribute to walking limitations in people with Parkinson's disease (PD), but the contribution of muscle strength to walking speed has not been examined extensively. RESEARCH QUESTION: Does strength of the major lower limb muscles contribute to walking speed over short and long distances in people with PD? METHOD: na. DESIGN: A cross-sectional, observational study. PARTICIPANTS: 50 people with mild PD. OUTCOME MEASURES: Maximum isometric strength of the flexors and extensors of the lower limb was measured using hand-held dynamometry. Flexed posture, postural instability and bradykinesia were measured using the MDS-UPDRS part III. Walking speed was measured during the 10-m Walk Test and 6-min Walk Test. RESULTS: Univariate analysis revealed that age, bradykinesia, flexed posture, and hip, knee and ankle weakness were all significantly correlated with walking speed over short and long distances. Multiple regression analysis revealed that age, bradykinesia, flexed posture and weakness of the hip and knee muscles together accounted for 47% of the variance in walking speed over a short distance, with age (R2 = 0.11, p = 0.003) making a significant independent contribution. Age, bradykinesia, flexed posture and strength of the hip and knee muscles together accounted for 56% of the variance in walking speed over a long distance. Age (R2 = 0.12, p = 0.001), weakness of the hip muscles (R2 = 0.12, p = 0.001) and bradykinesia (R2 = 0.04, p = 0.04) made significant, independent contributions to the variance in walking speed over a long distance. SIGNIFICANCE: In people with mild PD, weakness of the hip muscles and bradykinesia only make a significant relative contribution to walking speed over a long distance. Therefore, in people with normal walking speed over a short distance the 6-min Walk Test could be measured to more effectively identify the impact of motor impairments on walking.


Subject(s)
Parkinson Disease , Walking Speed , Humans , Hypokinesia , Cross-Sectional Studies , Muscle, Skeletal/physiology , Walking/physiology , Muscle Strength/physiology
6.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36041220

ABSTRACT

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Subject(s)
Electronic Nicotine Delivery Systems , Transcriptome , Vaping , Animals , Cricetinae , Male , Angiotensin-Converting Enzyme 2 , Angiotensins , Cotinine , Fibrosis , Inflammation/pathology , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mesocricetus , Nicotine/pharmacology , Renin , Superoxide Dismutase , Thromboplastin , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha , Vaping/adverse effects , Vascular Endothelial Growth Factor A
7.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35608904

ABSTRACT

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dinoprostone , Interleukin-13/metabolism , Mice , Respiratory System
8.
J Cyst Fibros ; 21(4): 637-643, 2022 07.
Article in English | MEDLINE | ID: mdl-35248469

ABSTRACT

BACKGROUND: A decrease in the lumacaftor-mediated increase in F508del-CFTR function and expression upon prolonged exposure to ivacaftor (VX-770) has previously been described. However, the efficacy observed with ivacaftor-containing CFTR modulator therapies in vivo is in conflict with these reports. We hypothesized that a portion of the apparent decrease in CFTR function observed after prolonged ivacaftor exposure in vitro was due to an increase in constitutive CFTR-mediated ion transport. METHODS: Human nasal epithelial (HNE) cells were obtained by brushings from three CF individuals homozygous for the F508del CFTR mutation. Differentiated epithelia were pre-treated with prolonged (24 h) exposure to either lumacaftor (VX-809; 3 µM), tezacaftor (VX-661; 3 µM), elexacaftor (VX-445; 3 µM), and/or ivacaftor (0.1-6.4 µM) or DMSO (vehicle control), and CFTR function was assayed by Ussing chamber electrophysiology. RESULTS: In cells treated with lumacaftor, constitutive CFTR activity was not increased at any concentration of co-treatment with ivacaftor. Constitutive CFTR activity was also unchanged in cells treated with the combination of tezacaftor and elexacaftor. An increase in constitutive CFTR activity above the DMSO controls was only observed in cells treated with the combination of tezacaftor and elexacaftor and co-treated with at least 0.1 µM ivacaftor. CONCLUSIONS: These results demonstrate that ivacaftor is a critical component in the triple combination therapy along with tezacaftor and elexacaftor to increase constitutive CFTR function. This work further elucidates the mechanism of action of the effective triple combination therapeutic that is now the primary clinical tool in treating CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols , Benzodioxoles , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dimethyl Sulfoxide/therapeutic use , Drug Combinations , Humans , Indoles , Mutation , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
9.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L305-L314, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35020527

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by mutations of the gene encoding a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR modulator therapies consist of small-molecule drugs that rescue mutant CFTR. Regimens of single or combinations of CFTR modulators still rely on endogenous levels of cAMP to regulate CFTR activity. We investigated CFTR activation by the natural mediator prostaglandin E2 (PGE2) and lubiprostone (a Food and Drug Administration-approved drug known to target prostaglandin receptors) and tested the hypothesis that receptor-mediated CFTR activators can be used in combination with currently available CFTR modulators to increase function of mutant CFTR. Primary-cultured airway epithelia were assayed in Ussing chambers. Experimental CFTR activators and established CFTR modulators were applied for 24 h and/or acutely and analyzed for their effect on CFTR activity as measured by changes in short-circuit current (ISC). In non-CF airway epithelia, acute application of lubiprostone and PGE2 activated CFTR to the levels comparable to forskolin (Fsk). Pretreatment (24 h) with antagonists to prostaglandin receptors EP2 and EP4 abolished the ability of lubiprostone to acutely activate CFTR. In F508del homozygous airway epithelia pretreated with the triple combination of elexacaftor, tezacaftor, and ivacaftor (ELEXA/TEZ/IVA; i.e., Trikafta), acute application of lubiprostone was able to maximally activate CFTR. Prolonged (24 h) cotreatment of F508del homozygous epithelia with ELEXA/TEZ/IVA and lubiprostone increased acute CFTR activation by ∼60% compared with the treatment with ELEXA/TEZ/IVA alone. This work establishes the feasibility of targeting prostaglandin receptors to activate CFTR on the airway epithelia and demonstrates that cotreatment with lubiprostone can further restore modulator-rescued CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/pharmacology , Aminophenols/therapeutic use , Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dinoprostone/pharmacology , Humans , Lubiprostone/pharmacology , Lubiprostone/therapeutic use , Mutation , Prostaglandins , Receptors, Prostaglandin E, EP2 Subtype , Signal Transduction
10.
Front Syst Neurosci ; 16: 1086680, 2022.
Article in English | MEDLINE | ID: mdl-36762289

ABSTRACT

Although neural plasticity is now widely studied, there was a time when the idea of adult plasticity was antithetical to the mainstream. The essential stumbling block arose from the seminal experiments of Hubel and Wiesel who presented convincing evidence that there existed a critical period for plasticity during development after which the brain lost its ability to change in accordance to shifts in sensory input. Despite the zeitgeist that mature brain is relatively immutable to change, there were a number of examples of adult neural plasticity emerging in the scientific literature. Interestingly, some of the earliest of these studies involved visual plasticity in the adult cat. Even earlier, there were reports of what appeared to be functional reorganization in adult rat somatosensory thalamus after dorsal column lesions, a finding that was confirmed and extended with additional experimentation. To demonstrate that these findings reflected more than a response to central injury, and to gain greater control of the extent of the sensory loss, peripheral nerve injuries were used that eliminated ascending sensory information while leaving central pathways intact. Merzenich, Kaas, and colleagues used peripheral nerve transections to reveal unambiguous reorganization in primate somatosensory cortex. Moreover, these same researchers showed that this plasticity proceeded in no less than two stages, one immediate, and one more protracted. These findings were confirmed and extended to more expansive cortical deprivations, and further extended to the thalamus and brainstem. There then began a series of experiments to reveal the physiological, morphological and neurochemical mechanisms that permitted this plasticity. Ultimately, Mowery and colleagues conducted a series of experiments that carefully tracked the levels of expression of several subunits of glutamate (AMPA and NMDA) and GABA (GABAA and GABAB) receptor complexes in primate somatosensory cortex at several time points after peripheral nerve injury. These receptor subunit mapping experiments revealed that membrane expression levels came to reflect those seen in early phases of critical period development. This suggested that under conditions of prolonged sensory deprivation the adult cells were returning to critical period like plastic states, i.e., developmental recapitulation. Here we outline the heuristics that drive this phenomenon.

11.
Sci Rep ; 11(1): 22616, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799640

ABSTRACT

Quantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis/therapy , Epithelial Cells/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Aminophenols , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Biological Products , Cells, Cultured , Colforsin/pharmacology , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Electrophysiology/methods , Epithelium/metabolism , Genotype , Humans , Mice , NIH 3T3 Cells , Quinolones
13.
Sci Rep ; 11(1): 19810, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615919

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to early death due to progressive lung disease. The development of small-molecule modulators that directly interact with CFTR to aid in protein folding ("correctors") and/or increase channel function ("potentiators") have proven to be highly effective in the therapeutic treatment of CF. Notably, incorporation of the next-generation CFTR corrector, elexacaftor, into a triple combination therapeutic (marketed as Trikafta) has shown tremendous clinical promise in treating CF caused by F508del-CFTR. Here, we report on a newly-described role of elexacaftor as a CFTR potentiator. We explore the acute and chronic actions, pharmacology, and efficacy of elexacaftor as a CFTR potentiator in restoring function to multiple classes of CFTR mutations. We demonstrate that the potentiating action of elexacaftor exhibits multiplicative synergy with the established CFTR potentiator ivacaftor in rescuing multiple CFTR class defects, indicating that a new combination therapeutic of ivacaftor and elexacaftor could have broad impact on CF therapies.


Subject(s)
Aminophenols/pharmacology , Benzodioxoles/pharmacology , Chloride Channel Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis , Indoles/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Quinolines/pharmacology , Cells, Cultured , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Drug Combinations , Humans
14.
Pharmaceutics ; 13(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208613

ABSTRACT

Glaucoma etiology often includes retinal ganglion cell (RGC) death associated with elevated intraocular pressure (IOP). However, even when IOP is managed well, disease can progress. It is thus important to develop therapeutic approaches that directly protect RGCs in an IOP-independent manner. Compromised nicotinamide adenine dinucleotide (NAD+) metabolism occurs in neurodegenerative diseases, including models of glaucoma. Here we report testing the protective effects of prophylactically systemically administered nicotinamide riboside (NR), a NAD+ precursor, in a mouse model of acute RGC damage (optic nerve crush (ONC)), and in a chronic model of RGC degeneration (ocular hypertension induced by intracameral injection of microbeads). For both models, treatment enhanced RGC survival, assessed by counting cells in retinal flatmounts immunostained for Brn3a+. In the ONC model, treatment preserved RGC function, as assessed by pattern electroretinogram, and suppressed retinal inflammation, as assessed by immunofluorescence staining of retinal fixed sections for glial fibrillary acidic protein (GFAP). This is the first study to demonstrate that systemic treatment with NR is protective in acute and chronic models of RGC damage. The protection is significant and, considering that NR is highly bioavailable in and well-tolerated by humans, may support the proposition of prospective human subject studies.

15.
Transl Vis Sci Technol ; 10(8): 10, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34251426

ABSTRACT

Purpose: We aimed to explore differences in the NaIO3-elicited responses of retinal pigment epithelium (RPE) and other retinal cells associated with mouse strains and dosing regimens. Methods: One dose of NaIO3 at 10 or 15 mg/kg was given intravenously to adult male C57BL/6J and 129/SV-E mice. Control animals were injected with PBS. Morphologic and functional changes were characterized by spectral domain optical coherence tomography, electroretinography, histologic, and immunofluorescence techniques. Results: Injection with 10 mg/kg of NaIO3 did not cause consistent RPE or retinal changes in either strain. Administration of 15 mg/kg of NaIO3 initially induced a large transient increase in scotopic electroretinography a-, b-, and c-wave amplitudes within 12 hours of injection, followed by progressive structural and functional degradation at 3 days after injection in C57BL/6J mice and at 1 week after injection in 129/SV-E mice. RPE cell loss occurred in a large posterior-central lesion with a ring-like transition zone of abnormally shaped cells starting 12 hours after NaIO3 treatment. Conclusions: NaIO3 effects depended on the timing, dosage, and mouse strain. The RPE in the periphery was spared from damage compared with the central RPE. The large transient increase in the electroretinography was remarkable. Translational Relevance: This study is a phase T1 translational research study focusing on the development and validation of a mouse model of RPE damage. It provides a detailed foundation for future research, informing choices of mouse strain, dosage, and time points to establish NaIO3-induced RPE damage.


Subject(s)
Iodates , Retinal Pigment Epithelium , Animals , Electroretinography , Iodates/toxicity , Male , Mice , Mice, Inbred C57BL
16.
Investig Clin Urol ; 62(4): 423-429, 2021 07.
Article in English | MEDLINE | ID: mdl-34085792

ABSTRACT

PURPOSE: The negative correlation between BPH-size and incidence of prostate cancer (PCa) is well-documented in the literature, however the exact mechanism is not well-understood. The present study uses histo-anatomical imaging to study prostate volume in correlation to prostate capsule thickness, and glandular epithelial cell density within the peripheral zone (PZ). MATERIALS AND METHODS: Specimens were selected from radical prostatectomies ranging from 20 to 160 mL based on ease of anatomical reconstruction by the slides. A total of 60 patients were selected and underwent quantitative measurements of prostate capsule thickness and glandular epithelial density within the PZ using computer-based imaging software. Pearson's correlation and a stepwise multiple linear regression analysis was conducted to determine the relationship between these measured parameters and the clinical characteristic of these patients. RESULTS: Pearson's correlation analysis revealed a strongly significant, negative correlation between prostate volume and glandular epithelial cell density (r(58)=-0.554, p<0.001), and a strongly significant, positive correlation between prostate volume and average capsule thickness (r(58)=0.462, p<0.001). Results of multiple regression analysis showed that average glandular epithelial cell density added statistically to this prediction (p<0.05). CONCLUSIONS: The results suggest that growth of the transition zone in BPH causes increased fibrosis of the PZ, leading to atrophy and fibrosis of glandular cells. As 80% of PCa originates from the glandular epithelium within the PZ, this observed phenomenon may explain the inverse correlation between BPH and PCa that is well-documented in the literature.


Subject(s)
Epithelial Cells/pathology , Prostate/pathology , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , Aged , Atrophy , Fibrosis , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Organ Sparing Treatments , Prostatectomy , Prostatic Hyperplasia/surgery , Retrospective Studies
18.
BMJ Open Respir Res ; 8(1)2021 02.
Article in English | MEDLINE | ID: mdl-33622672

ABSTRACT

INTRODUCTION: The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. METHODS: After differentiation at the air-liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. RESULTS: While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. DISCUSSION: Significant transcriptional downregulation of ENaC subunits ß and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Sodium Channels , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Down-Regulation , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Epithelium/metabolism , Humans , Temperature
19.
Physiol Rep ; 8(19): e14603, 2020 10.
Article in English | MEDLINE | ID: mdl-33038073

ABSTRACT

INTRODUCTION: One method for assessing the in vitro response to CFTR-modulating compounds is by analysis of epithelial monolayers in an Ussing chamber, where the apical and basolateral surfaces are isolated and the potential difference, short-circuit current, and transepithelial resistance can be monitored. The effect of a chloride ion gradient across airway epithelia on transepithelial chloride transport and the magnitude of CFTR modulator efficacy were examined. METHODS: CFTR-mediated changes in the potential difference and transepithelial currents of primary human nasal epithelial cell cultures were quantified in Ussing chambers with either symmetrical solutions or reduced chloride solutions in the apical chamber. CFTR activity in homozygous F508del CFTR epithelia was rescued by treatment with VX-661, C4/C18, 4-phenylbutyrate (4-PBA) for 24 hr at 37°C or by incubation at 29°C for 48 hr. RESULTS: Imposing a chloride gradient increased CFTR-mediated and CaCC-mediated ion transport. Treatment of F508del CFTR homozygous cells with CFTR modulating compounds increased CFTR activity, which was significantly more evident in the presence of a chloride gradient. This observation was recapitulated with temperature-mediated F508del CFTR correction. CONCLUSIONS: Imposing a chloride gradient during Ussing chamber measurements resulted in increased CFTR-mediated ion transport in expanded non-CF and F508del CFTR homozygous epithelia. In F508del CFTR homozygous epithelia, the magnitude of response to CFTR modulating compounds or low temperature was greater when assayed with a chloride gradient compared to symmetrical chloride, resulting in an apparent increase in measured efficacy. Future work may direct which methodologies utilized to quantify CFTR modulator response in vitro are most appropriate for the estimation of in vivo efficacy.


Subject(s)
Benzodioxoles/pharmacology , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Indoles/pharmacology , Adult , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Epithelial Cells/metabolism , Epithelium/metabolism , Female , Humans , Ion Transport/drug effects , Male , Nasal Mucosa/metabolism
20.
Invest Ophthalmol Vis Sci ; 61(10): 47, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32852543

ABSTRACT

Purpose: Maintaining levels of nicotinamide adenine dinucleotide (NAD+), a coenzyme critical for cellular energetics and biosynthetic pathways, may be therapeutic in retinal disease because retinal NAD+ levels decline during retinal damage and degeneration. The purpose of this study was to investigate whether systemic treatment with nicotinamide riboside (NR), a NAD+ precursor that is orally deliverable and well-tolerated by humans, is protective in a mouse model of light-induced retinal degeneration. Methods: Mice were injected intraperitoneally with vehicle or NR the day before and the morning of exposure to degeneration-inducing levels of light. Retinal function was assessed by electroretinography and in vivo retinal morphology and inflammation was assessed by optical coherence tomography. Post mortem retina sections were assessed for morphology, TUNEL, and inflammatory markers Iba1 and GFAP. Retinal NAD+ levels were enzymatically assayed. Results: Exposure to degeneration-inducing levels of light suppressed retinal NAD+ levels. Mice undergoing light-induced retinal degeneration exhibited significantly suppressed retinal function, severely disrupted photoreceptor cell layers, and increased apoptosis and inflammation in the outer retina. Treatment with NR increased levels of NAD+ in retina and prevented these deleterious outcomes. Conclusions: This study is the first to report the protective effects of NR treatment in a mouse model of retinal degeneration. The positive outcomes, coupled with human tolerance to NR dosing, suggest that maintaining retinal NAD+ via systemic NR treatment should be further explored for clinical relevance.


Subject(s)
Niacinamide/analogs & derivatives , Retinal Degeneration/prevention & control , Animals , Disease Models, Animal , Electroretinography , Fluorescent Antibody Technique , Injections, Intraperitoneal , Light/adverse effects , Male , Mice , Mice, Inbred BALB C , NAD/metabolism , Niacinamide/administration & dosage , Niacinamide/therapeutic use , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/radiation effects , Pyridinium Compounds , Retina/diagnostic imaging , Retina/drug effects , Retina/metabolism , Retina/radiation effects , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/etiology , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...