Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 15: 621121, 2021.
Article in English | MEDLINE | ID: mdl-33776636

ABSTRACT

Advances in large-scale proteomics analysis have been very useful in understanding pathogenesis of diseases and elaborating therapeutic strategies. Proteomics has been employed to study Parkinson disease (PD); however, sparse studies reported proteome investigation after cell therapy approaches. In this study, we used liquid chromatography-tandem mass spectrometry and systems biology to identify differentially expressed proteins in a translational mouse model of PD after cell therapy. Proteins were extracted from five nigrostriatal-related brain regions of mice previously lesioned with 6-hydroxydopamine in the substantia nigra. Protein expression was compared in non-grafted brain to 1 and 7 days after intranigral grafting of E12.5 embryonic ventral mesencephalon (VM). We found a total of 277 deregulated proteins after transplantation, which are enriched for lipid metabolism, oxidative phosphorylation and PD, thus confirming that our animal model is similar to human PD and that the presence of grafted cells modulates the expression of these proteins. Notably, seven proteins (Acta1, Atp6v1e1, Eci3, Lypla2, Pip4k2a, Sccpdh, and Sh3gl2) were commonly down-regulated after engraftment in all studied brain regions. These proteins are known to be involved in the formation of lipids and recycling of dopamine (DA) vesicle at the synapse. Moreover, intranigral transplantation of VM cells decreased the expression of proteins related to oxidative stress, especially in the nigrostriatal pathway containing the DA grafted neurons. In the same regions, an up-regulation of several proteins including α-synuclein and tyrosine hydroxylase was observed, whereas expression of tetraspanin 7 was shut down. Overall, these results suggest that intranigral transplantation of VM tissue in an animal model of PD may induce a decrease of oxidative stress in the nigrostriatal pathway and a restoration of the machinery of neurotransmitters, particularly DA release to promote DA transmission through a decrease of D2 DA receptors endocytosis. Identification of new mechanistic elements involved in the nigrostriatal reconstruction process, using translational animal models and systems biology, is a promising approach to enhance the repair of this pathway in PD patients undergoing cell therapy.

2.
Front Mol Neurosci ; 12: 160, 2019.
Article in English | MEDLINE | ID: mdl-31293384

ABSTRACT

We previously reported that embryonic motor cortical neurons transplanted 1-week after lesion in the adult mouse motor cortex significantly enhances graft vascularization, survival, and proliferation of grafted cells, the density of projections developed by grafted neurons and improves functional repair and recovery. The purpose of the present study is to understand the extent to which post-traumatic inflammation following cortical lesion could influence the survival of grafted neurons and the development of their projections to target brain regions and conversely how transplanted cells can modulate host inflammation. For this, embryonic motor cortical tissue was grafted either immediately or with a 1-week delay into the lesioned motor cortex of adult mice. Immunohistochemistry (IHC) analysis was performed to determine the density and cell morphology of resident and peripheral infiltrating immune cells. Then, in situ hybridization (ISH) was performed to analyze the distribution and temporal mRNA expression pattern of pro-inflammatory or anti-inflammatory cytokines following cortical lesion. In parallel, we analyzed the protein expression of both M1- and M2-associated markers to study the M1/M2 balance switch. We have shown that 1-week after the lesion, the number of astrocytes, microglia, oligodendrocytes, and CD45+ cells were significantly increased along with characteristics of M2 microglia phenotype. Interestingly, the majority of microglia co-expressed transforming growth factor-ß1 (TGF-ß1), an anti-inflammatory cytokine, supporting the hypothesis that microglial activation is also neuroprotective. Our results suggest that the modulation of post-traumatic inflammation 1-week after cortical lesion might be implicated in the improvement of graft vascularization, survival, and density of projections developed by grafted neurons.

3.
J Nanosci Nanotechnol ; 19(7): 3744-3754, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30764930

ABSTRACT

Small well-defined spherical gold nanoparticles were synthesized by a simple non-physical method based on a mixture of gold salt, tetraethylene oxide and water, free of any additional reducing chemical agent or physical method. The ratio of tetraethylene oxide to water was optimized to achieve a fast synthesis within 30 min. Transmission electron microscopy images showed well dispersed gold nanospheres with a size ranging from 10 to 15 nm. XPS was used to confirm the oxidation state of gold nanoparticles and the oxidation products from tetraethylene oxide after the reaction. This new protocol performed in sustainable and biocompatible conditions is complementary to the current methods used to synthesize gold nanospheres. In order to use these particles in biological samples, we correlated the atomic absorption with the colorimetric concentration of nanospheres in solution. After 24 h of incubation of cancer or neuronal cell lines with these nanoparticles, transmission electron microscopy images showed similar cellular uptake in both cell lines, especially in cytoplasmic vesicular structures.


Subject(s)
Gold , Metal Nanoparticles , Gold Compounds , Oxides , Water
4.
Restor Neurol Neurosci ; 34(6): 877-895, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27858721

ABSTRACT

BACKGROUND: Cell therapy is a promising approach for Parkinson's disease (PD). Others and we have previously shown that transplantation of ventral mesencephalic fetal cells into substantia nigra (SN) in an animal model of PD enables anatomical and functional repair of the degenerated pathway. However, the molecular basis of this repair is still largely unknown. OBJECTIVE: In this work, we studied the expression of several axon guidance molecules that may be implicated in the repair of the degenerated nigrostriatal pathway. METHODS: The expression of axon guidance molecules was analyzed using qRT-PCR on five specific regions surrounding the nigrostriatal pathway (ventral mesencephalon (VM), thalamus (Thal), medial forebrain bundle (MFB), nucleus accumbens (NAcc) and caudate putamen (CPu)), one and seven days after lesion and transplantation. RESULTS: We showed that mRNA expression of specific axon guidance molecules and their receptors is modified in structures surrounding the nigrostriatal pathway, suggesting their involvement in the axon guidance of grafted neurons. Moreover, we highlight a possible new role for semaphorin 7A in this repair. CONCLUSION: Overall, our data provide a reliable basis to understand how axons of grafted neurons are able to navigate towards their targets and interact with the molecular environment in the adult brain. This should help to improve the efficiency of cell replacement approaches in PD.


Subject(s)
Brain/metabolism , Gene Expression Regulation/physiology , Parkinson Disease/metabolism , Parkinson Disease/surgery , Stem Cell Transplantation/methods , Animals , Disease Models, Animal , Embryo, Mammalian , Ephrin-A2/genetics , Ephrin-A2/metabolism , Ephrin-A3/genetics , Ephrin-A3/metabolism , Female , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , RNA, Messenger/metabolism , Receptor, EphA5/genetics , Receptor, EphA5/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Substantia Nigra/cytology , Sympatholytics/toxicity
5.
Front Cell Neurosci ; 6: 32, 2012.
Article in English | MEDLINE | ID: mdl-22866028

ABSTRACT

Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological, and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson's disease (PD). Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.

6.
Stem Cells ; 30(4): 719-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22290807

ABSTRACT

Neural stem cells (NSC) persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ stem and progenitor cell proliferation are not fully elucidated. Vitamin K-dependent proteins (VKDPs) are mainly secreted factors that were initially discovered as major regulators of blood coagulation. Warfarin ((S(-)-3-acetonylbenzyl)-4-hydroxycoumarin)), a widespread anticoagulant, is a vitamin K antagonist that inhibits the production of functional VKDP. We demonstrate that the suppression of functional VKDPs production, in vitro, by exposure of SVZ cell cultures to warfarin or, in vivo, by its intracerebroventricular injection to mice, leads to a substantial increase in SVZ cell proliferation. We identify the anticoagulant factors, protein S and its structural homolog Gas6, as the two only VKDPs produced by SVZ cells and describe the expression and activation pattern of their Tyro3, Axl, and Mer tyrosine kinase receptors. Both in vitro and in vivo loss of function studies consisting in either Gas6 gene invalidation or in endogenous protein S neutralization, provided evidence for an important novel regulatory role of these two VKDPs in the SVZ neurogenic niche. Specifically, we show that while a loss of Gas6 leads to a reduction in the numbers of stem-like cells and in olfactory bulb neurogenesis, endogenous protein S inhibits SVZ cell proliferation. Our study opens up new perspectives for investigating further the role of vitamin K, VKDPs, and anticoagulants in NSC biology in health and disease.


Subject(s)
Cerebral Ventricles/cytology , Stem Cell Niche , Vitamin K/metabolism , Animals , Apoptosis/drug effects , Carbon-Carbon Ligases/metabolism , Cell Proliferation/drug effects , Cerebral Ventricles/enzymology , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mixed Function Oxygenases/metabolism , Protein S/metabolism , Proto-Oncogene Proteins/metabolism , Rats , Rats, Wistar , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cell Niche/drug effects , Vitamin K/antagonists & inhibitors , Vitamin K Epoxide Reductases , Warfarin/administration & dosage , Warfarin/pharmacology , Axl Receptor Tyrosine Kinase
7.
BMC Neurosci ; 11: 105, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20738842

ABSTRACT

BACKGROUND: EphrinA5 is one of the best-studied members of the Eph-ephrin family of guidance molecules, known to be involved in brain developmental processes. Using in situ hybridization, ephrinA5 mRNA expression has been detected in the retinotectal, the thalamocortical, and the olfactory systems; however, no study focused on the distribution of the protein. Considering that this membrane-anchored molecule may act far from the neuron soma expressing the transcript, it is of a crucial interest to localize ephrinA5 protein to better understand its function. RESULTS: Using immunohistochemistry, we found that ephrinA5 protein is highly expressed in the developing mouse brain from E12.5 to E16.5. The olfactory bulb, the cortex, the striatum, the thalamus, and the colliculi showed high intensity of labelling, suggesting its implication in topographic mapping of olfactory, retinocollicular, thalamocortical, corticothalamic and mesostriatal systems. In the olfactory nerve, we found an early ephrinA5 protein expression at E12.5 suggesting its implication in the guidance of primary olfactory neurons into the olfactory bulb. In the thalamus, we detected a dynamic graduated protein expression, suggesting its role in the corticothalamic patterning, whereas ephrinA5 protein expression in the target region of mesencephalic dopaminergic neurones indicated its involvement in the mesostriatal topographic mapping. Following E16.5, the signal faded gradually and was barely detectable at P0, suggesting a main role for ephrinA5 in primary molecular events in topographic map formation. CONCLUSION: Our work shows that ephrinA5 protein is expressed in restrictive regions of the developing mouse brain. This expression pattern points out the potential sites of action of this molecule in the olfactory, retinotectal, thalamocortical, corticothalamic and mesostriatal systems, during development. This study is essential to better understand the role of ephrinA5 during developmental topographic mapping of connections and to further characterise the mechanisms involved in pathway restoration following cell transplantation in the damaged brain.


Subject(s)
Brain Chemistry/physiology , Brain/growth & development , Ephrin-A5/metabolism , Animals , Animals, Newborn , Antibodies , Brain/embryology , Genotype , Immunohistochemistry , Mice , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Olfactory Nerve/growth & development , Olfactory Nerve/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Smell , Transcription, Genetic
8.
Neurobiol Dis ; 35(3): 477-88, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19616502

ABSTRACT

The main transplantation strategy in Parkinson's disease has been to place dopaminergic grafts not in their ontogenic site, the substantia nigra, but in their target area, the striatum with contrasting results. Here we have used green fluorescent protein transgenic mouse embryos as donors of ventral mesencephalic cells for transplantation into the pre-lesioned substantia nigra of an adult wild-type host. This allows distinguishing the transplanted cells and their projections from those of the host. Grafted cells integrated within the host mesencephalon and expressed the dopaminergic markers tyrosine hydroxylase, vesicular monoamine transporter 2 and dopamine transporter. Most of the dopaminergic cells within the transplant expressed the substantia nigra marker Girk2 while a lesser proportion expressed the ventral tegmental area marker calbindin. Mesencephalic transplants developed projections through the medial forebrain bundle to the striatum, increased striatal dopamine levels and restored normal behavior. Interestingly, only mesencephalic transplants were able to restore the nigrostriatal projections as dopamine neurons originating from embryonic olfactory bulb transplants send projections only in the close vicinity of the transplantation site that did not reach the striatum. Our results show for the first time the ability of intranigral foetal dopaminergic neurons grafts to restore the damaged nigrostriatal pathway in adult mice. Together with our previous findings of efficient embryonic transplantation within the pre-lesioned adult motor cortex, these results demonstrate that the adult brain is permissive to specific and long distance axonal growth. They further open new avenues in cell transplantation therapies applied for the treatment of neurodegenerative disorders such as Parkinson's disease.


Subject(s)
Brain Tissue Transplantation , Fetal Tissue Transplantation , Mesencephalon/embryology , Mesencephalon/transplantation , Substantia Nigra/physiopathology , Substantia Nigra/surgery , Aging , Animals , Calbindins , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Green Fluorescent Proteins/genetics , Mesencephalon/pathology , Mesencephalon/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Neural Pathways/pathology , Neural Pathways/physiopathology , Neural Pathways/surgery , Neurons/pathology , Neurons/physiology , Olfactory Bulb/embryology , Olfactory Bulb/transplantation , S100 Calcium Binding Protein G/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/metabolism
9.
Neurobiol Dis ; 34(3): 441-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19285132

ABSTRACT

The neuropeptide Y (NPY) is widely expressed in the central nervous system and has been shown to stimulate neurogenesis in the hippocampus and the olfactory epithelium. Here, we demonstrate that intracerebroventricular injection of NPY stimulates proliferation of neural precursors in the mice subventricular zone (SVZ), one the most neurogenic areas of the brain. Newly generated neuroblasts migrate through the rostral migratory stream to the olfactory bulb and also directly to the striatum, as evidenced by BrdU labelling and cell phenotyping. Using knock-out mice, specific NPY receptor agonists and antagonists, we report that this neuroproliferative effect is mediated by the Y1 receptor subtype that we found to be highly expressed in the SVZ both at the mRNA and protein levels. Our data suggest that stimulating endogenous SVZ neural stem cells by NPY may be of a potential interest in cell replacement based therapies of neurodegenerative diseases affecting the striatum such as Huntington's disease.


Subject(s)
Adult Stem Cells/physiology , Cell Movement/physiology , Cell Proliferation , Neurogenesis/physiology , Neurons/physiology , Neuropeptide Y/metabolism , Animals , Brain/physiology , Bromodeoxyuridine , Cell Count , Cerebral Ventricles/physiology , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism
10.
Stem Cells ; 27(2): 408-19, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18988709

ABSTRACT

Neural stem cells persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ neural stem cell proliferation, self-renewal, and differentiation are not fully elucidated. In the present report, we describe a growth-stimulatory activity of liver explant-conditioned media on SVZ cell cultures and identify hepatocyte growth factor (HGF) as a major player in this effect. HGF exhibited a mitogenic activity on SVZ cell cultures in a mitogen-activated protein kinase (MAPK) (ERK1/2)-dependent manner as U0126, a specific MAPK inhibitor, blocked it. Combining a functional neurosphere forming assay with immunostaining for c-Met, along with markers of SVZ cells subtypes, demonstrated that HGF promotes the expansion of neural stem-like cells that form neurospheres and self-renew. Immunostaining, HGF enzyme-linked immunosorbent assay and Madin-Darby canine kidney cell scattering assay indicated that SVZ cell cultures produce and release HGF. SVZ cell-conditioned media induced proliferation on SVZ cell cultures, which was blocked by HGF-neutralizing antibodies, hence implying that endogenously produced HGF accounts for a major part in SVZ mitogenic activity. Brain sections immunostaining revealed that HGF is produced by nestin-expressing cells and c-Met is expressed within the SVZ by immature cells. HGF intracerebroventricular injection promoted SVZ cell proliferation and increased the ability of these cells exposed in vivo to HGF to form neurospheres in vitro, whereas intracerebroventricular injection of HGF-neutralizing antibodies decreased SVZ cell proliferation. The present study unravels a major role, both in vitro and in vivo, for endogenous HGF in SVZ neural stem cell growth and self-renewal.


Subject(s)
Cerebral Ventricles/cytology , Hepatocyte Growth Factor/physiology , Neurons/cytology , Signal Transduction/physiology , Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Cells, Cultured , Dogs , Enzyme-Linked Immunosorbent Assay , Hepatocyte Growth Factor/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
11.
Nat Neurosci ; 10(10): 1294-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17828256

ABSTRACT

Damage to the adult motor cortex leads to severe and frequently irreversible deficits in motor function. Transplantation of embryonic cortical neurons into the damaged adult motor cortex was previously shown to induce partial recovery, but reports on graft efferents have varied from no efferent projections to sparse innervation. Here, we grafted embryonic cortical tissue from transgenic mice overexpressing a green fluorescent protein into the damaged motor cortex of adult mice. Grafted neurons developed efferent projections to appropriate cortical and subcortical host targets, including the thalamus and spinal cord. These projections were not a result of cell fusion between the transplant and the host neurons. Host and transplanted neurons formed synaptic contacts and numerous graft efferents were myelinated. These findings demonstrate that there is substantial anatomical reestablishment of cortical circuitry following embryonic cortex grafting into the adult brain. They suggest that there is an unsuspected potential for neural cell transplantation to promote reconstruction after brain injury.


Subject(s)
Brain Injuries , Motor Cortex/cytology , Motor Cortex/surgery , Nerve Regeneration/physiology , Neurons/transplantation , Animals , Brain Injuries/pathology , Brain Injuries/physiopathology , Brain Injuries/surgery , Brain Tissue Transplantation/methods , Doublecortin Domain Proteins , Embryo, Mammalian , Green Fluorescent Proteins/genetics , In Situ Hybridization, Fluorescence/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Immunoelectron/methods , Microtubule-Associated Proteins/metabolism , Neural Pathways/physiology , Neurons/metabolism , Neurons/ultrastructure , Neuropeptides/metabolism
12.
Int J Dev Biol ; 49(2-3): 209-20, 2005.
Article in English | MEDLINE | ID: mdl-15906234

ABSTRACT

Oligodendrocytes are the myelin forming cells of the central nervous system. Over the last decade, their development in the embryonic brain and spinal cord has been documented following the discovery of early oligodendroglial markers. This review highlights the fundamental results obtained on the specification and migration of oligodendroglial cells and illustrates our advances in the knowledge of the cell lineage expressing plp (proteolipid protein), one of the early oligodendroglial genes.


Subject(s)
Brain/embryology , Nerve Tissue Proteins/genetics , Oligodendroglia/cytology , Animals , Animals, Genetically Modified , Cell Movement , Chick Embryo , Morphogenesis , Oligodendroglia/physiology , Stem Cells/cytology , Stem Cells/physiology
13.
Neuron Glia Biol ; 1(1): 73-83, 2004 Feb.
Article in English | MEDLINE | ID: mdl-18634608

ABSTRACT

The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell-cell and matrix-cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs.Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph-ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.

SELECTION OF CITATIONS
SEARCH DETAIL
...