Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 23(1): 279, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980483

ABSTRACT

BACKGROUND: Myeloid cells play an essential role in cancer metastasis. The phenotypic diversity of these cells during cancer development has attracted great interest; however, their functional heterogeneity and plasticity have limited their role as prognostic markers and therapeutic targets. METHODS: To identify markers associated with myeloid cells in metastatic tumours, we compared transcriptomic data from immune cells sorted from metastatic and non-metastatic mammary tumours grown in BALB/cJ mice. To assess the translational relevance of our in vivo findings, we assessed human breast cancer biopsies and evaluated the association between arginase 1 protein expression in breast cancer tissues with tumour characteristics and patient outcomes. RESULTS: Among the differentially expressed genes, arginase 1 (ARG1) showed a unique expression pattern in tumour-infiltrating myeloid cells that correlated with the metastatic capacity of the tumour. Even though ARG1-positive cells were found almost exclusively inside the metastatic tumour, ARG1 protein was also present in the plasma. In human breast cancer biopsies, the presence of ARG1-positive cells was strongly correlated with high-grade proliferating tumours, poor prognosis, and low survival. CONCLUSION: Our findings highlight the potential use of ARG1-positive myeloid cells as an independent prognostic marker to evaluate the risk of metastasis in breast cancer patients.

2.
Breast Cancer Res Treat ; 201(2): 339-350, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450087

ABSTRACT

BACKGROUND AND AIMS: Amplification of S100A8 occurs in 10-30% of all breast cancers and has been linked to poorer prognosis. Similarly, the protein S100A8 is overexpressed in a roughly comparable proportion of breast cancers and is also found in infiltrating myeloid-lineage cells, again linked to poorer prognosis. We explore the relationship between these findings. METHODS: We examined S100A8 copy number (CN) alterations using fluorescence in situ hybridization in 475 primary breast cancers and 117 corresponding lymph nodes. In addition, we studied S100A8 protein expression using immunohistochemistry in 498 primary breast cancers from the same cohort. RESULTS: We found increased S100A8 CN (≥ 4) in tumor epithelial cells in 20% of the tumors, increased S100A8 protein expression in 15%, and ≥ 10 infiltrating S100A8 + polymorphonuclear cells in 19%. Both increased S100A8 CN and protein expression in cancer cells were associated with high Ki67 status, high mitotic count and high histopathological grade. We observed no association between increased S100A8 CN and S100A8 protein expression, and only a weak association (p = 0.09) between increased CN and number of infiltrating S100A8 + immune cells. Only S100A8 protein expression in cancer cells was associated with significantly worse prognosis. CONCLUSIONS: Amplification of S100A8 does not appear to be associated with S100A8 protein expression in breast cancer. S100A8 protein expression in tumor epithelial cells identifies a subgroup of predominantly non-luminal tumors with a high mean age at diagnosis and significantly worse prognosis. Finally, S100A8 alone is not a sufficient marker to identify infiltrating immune cells linked to worse prognosis.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Calgranulin A/genetics , Calgranulin A/metabolism , Cell Proliferation , Gene Dosage , In Situ Hybridization, Fluorescence , Prognosis
3.
Acta Derm Venereol ; 103: adv00883, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36883877

ABSTRACT

Melanoma is a highly metastatic tumour originating from neural crest-derived melanocytes. The aim of this study was to analyse the expression of neuron navigator 3 (NAV3) in relation to membrane type-1 matrix metalloproteinase MMP14, a major regulator of invasion, in 40 primary melanomas, 15 benign naevi and 2 melanoma cell lines. NAV3 copy number changes were found in 18/27 (67%) primary melanomas, so that deletions dominated (16/27 of samples, 59%). NAV3 protein was found to be localized at the leading edge of migrating melanoma cells in vitro. Silencing of NAV3 reduced both melanoma cell migration in 2-dimensional conditions, as well as sprouting in 3-dimensional collagen I. NAV3 protein expression correlated with MMP14 in 26/37 (70%) primary melanomas. NAV3 and MMP14 were co-expressed in all tumours with Breslow thickness < 1 mm, in 11/23 of mid-thickness tumours (1-5 mm), but in only 1/6 samples of thick (> 5 mm) melanomas. Altogether, NAV3 number changes are frequent in melanomas, and NAV3 and MMP14, while expressed in all thin melanomas, are often downregulated in thicker tumours, suggesting that the lack of both NAV3 and MMP14 favours melanoma progression.


Subject(s)
Matrix Metalloproteinase 14 , Melanoma , Humans , Matrix Metalloproteinase 14/genetics , Immunohistochemistry , Melanoma/pathology , Melanocytes/pathology , Neurons/pathology
4.
J Steroid Biochem Mol Biol ; 165(Pt B): 228-235, 2017 01.
Article in English | MEDLINE | ID: mdl-27343990

ABSTRACT

While estrogens have been shown to modulate EGFR/HER-1 and HER-2/neu expression in experimental systems, the effects of estrogen deprivation on expression levels of the HER-receptors and the neuregulin (NRG)1 ligand in breast cancers remain unknown. Here, we measured EGFR/HER-1-4 and NRG1 mRNA in ER positive tumors from 85 postmenopausal breast cancer patients before and after two weeks (n=64) and three months (n=85) of primary treatment with an aromatase inhibitor (AI). In tumors lacking HER-2/neu amplification, quantitative real-time PCR analyses revealed EGFR/HER-1 and NRG1 to vary significantly between the three time points (before therapy, after 2 weeks and after 3 months on treatment; P≤0.001 for both). Pair-wise comparison revealed a significant increase in EGFR/HER-1 already during the first two weeks of treatment (P=0.049) with a further increase for both EGFR/HER-1 and NRG1 after 3 months on treatment (P≤0.001 and P=0.001 for both comparing values at 3 months to values at baseline and 2 weeks respectively). No difference between tumors responding versus non-responders was recorded. Further, no significant change in any parameter was observed among HER-2/neu amplified tumors. Analyzing components of the HER-2/neu PI3K/Akt downstream pathway, the PIK3CA H1047R mutation was associated with treatment response (P=0.035); however no association between either AKT phosphorylation status or PIK3CA gene mutations and EGFR/HER-1 or NRG1 expression levels were observed. Our results indicate primary AI treatment to modulate expression of HER-family members and the growth factor NRG1 in HER-2/neu non-amplified breast cancers in vivo. Potential implications to long term sensitivity warrants further investigations.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Neuregulin-1/metabolism , Anastrozole , Breast Neoplasms/drug therapy , DNA Mutational Analysis , Drug Administration Schedule , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Letrozole , Mutation , Nitriles/therapeutic use , RNA, Messenger/metabolism , Receptor, ErbB-2/metabolism , Treatment Outcome , Triazoles/therapeutic use
5.
PLoS One ; 9(11): e112485, 2014.
Article in English | MEDLINE | ID: mdl-25384047

ABSTRACT

Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas.


Subject(s)
Adenocarcinoma/metabolism , Gastrins/pharmacology , Hormones/pharmacology , Protein Serine-Threonine Kinases/metabolism , Stomach Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cyclic AMP Response Element Modulator/metabolism , Humans , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Rats , Signal Transduction/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
6.
PLoS One ; 8(9): e76234, 2013.
Article in English | MEDLINE | ID: mdl-24086717

ABSTRACT

The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.


Subject(s)
Adenocarcinoma/metabolism , Gastrins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Stomach Neoplasms/metabolism , Active Transport, Cell Nucleus/physiology , Blotting, Western , Butyrate Response Factor 1/metabolism , Cell Line, Tumor , Feedback, Physiological/physiology , Flow Cytometry , Fluorescence Recovery After Photobleaching , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Immunohistochemistry , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
7.
In Vitro Cell Dev Biol Anim ; 49(3): 162-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23408059

ABSTRACT

The peptide hormone gastrin is an important factor for the maintenance and homeostasis of the gastric mucosa. We show that gastrin stimulates proliferation in a dose-dependent manner in the human gastric adenocarcinoma cell line AGS-GR. Furthermore, we demonstrate that the MAPK scaffold protein MEK partner 1 (MP1) is important for gastrin-induced phosphorylation of ERK1 and ERK2 and that MP1 promotes gastrin-induced proliferation of AGS-GR cells. Our results suggest a role of MP1 in gastrin-induced cellular responses involved in proliferation and homeostasis of the gastric mucosa.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/drug effects , Gastrins/administration & dosage , Homeostasis , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Gastric Mucosa/cytology , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , MAP Kinase Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...