Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-38083220

ABSTRACT

A physical system to generate a PPG-mimicking signal was designed and validated using everyday low-cost components to aid in medical sensor design. The pulse waveform was created by driving a working fluid into a silicone tube and changing the pressure within it. The corresponding waveform mimics a PPG signal through an artery, is adaptable, and repeatable. The working fluid is interchangeable allowing for change of blood analyte concentrations for development and testing of PPG-based sensors. The system was validated by black ink water compared to water and air compared to water testing to confirm optical transparency of the tube. The produced PPG signal, pulse rate and pressure change were compared to that seen in subjects. Optical transparency for 660 nm - 1550 nm wavelengths of light was validated with the signal, pulse rate and total compliance matching subject data. Thus, the system can mimic arterial pulses, creating a valid PPG signal that can be detected by PPG-based sensors.Clinical Relevance- Provides a low-cost, adaptable, physical PPG signal generator for research and development of optical medical sensor technologies.


Subject(s)
Arteries , Photoplethysmography , Humans , Heart Rate , Water
2.
Article in English | MEDLINE | ID: mdl-38083317

ABSTRACT

Spectroscopy is utilised extensively in medical sensing technology. Typically, hand-held spectroscopy equipment uses miniature narrow-band light emitting diodes (LEDs) and photodiodes to emit and detect light, respectively. Photodiodes typically absorb light across a wide spectra so measurements can be corrupted by surrounding light. LEDs in the visible spectrum have a narrower spectral response and can be used in place of a traditional photodiode. However, the absorption characteristics of near infrared (NIR) spectrum LEDs is unknown. A discrete, low-cost spectrophotometer was designed to assess spectral response for 8 narrow band NIR LEDs. The normalised and raw spectral response determined the optimum detector for 1050 nm - 1300 nm is the 1450 nm LED, and the optimum detector for 1450 nm - 1650 nm emissions is the 1650 nm LED.Clinical relevance - Understanding the spectral response of narrow-band LEDs in the NIR spectrum will aid development of NIR hand-held spectroscopy medical devices.


Subject(s)
Light , Spectroscopy, Near-Infrared , Spectrophotometry , Glucose
3.
Article in English | MEDLINE | ID: mdl-38083655

ABSTRACT

This paper presents a method for identifying parameter values for a double parallel resistor/constant-phase-element model of the electrode-skin interface for individual silver and silver/silver chloride electrodes. The impedance of each electrode was measured in five from 1 Hz-10 kHz. Phase features of these data were used to guide initial estimates for parameter values which were refined using a least squares algorithm. Resultant model impedances were compared with experimental data across a typical biosignal bandwidth (1 Hz-500 Hz). The method was effective in estimating component values in most datasets, and resulted in a mean relative RMS error of 7 % (σ = 8.3%) across the biosignal bandwidth.Clinical relevance- This work establishes a feature-based method for finding component parameter estimates for an electrode contact impedance model.


Subject(s)
Silver , Skin , Electric Impedance , Electrodes , Algorithms
4.
HardwareX ; 11: e00318, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35637841

ABSTRACT

Acquiring patient physiological waveforms is useful for studying hemodynamic management and developing medical monitoring systems. A low cost, Arduino controlled data acquisition system acquires arterial pressure waveforms (Edwards Lifesciences TruWave compatible) and measures fluid infusion rate using hanging scales. This system can be used at the same time as a clinical monitor, enabling recording of patient arterial pressure and fluid delivery for clinical research. The system is powered via a USB connection, which additionally provides serial output, aiding compatibility and customisation. A simple software user interface, developed in Python, shows outputs. Each data acquisition system, including all necessary connection cables costs ~US$90 and is multiple-use.

5.
Comput Biol Med ; 139: 104950, 2021 12.
Article in English | MEDLINE | ID: mdl-34678480

ABSTRACT

BACKGROUND: Intravenous fluid infusions are an important therapy for patients with circulatory shock. However, it is challenging to predict how patients' cardiac stroke volume (SV) will respond, and thus identify how much fluids should be delivered, if any. Model-predicted SV time-profiles of response to fluid infusions could potentially be used to guide fluid therapy. METHOD: A clinically applicable model-based method predicts SV changes in response to fluid-infusions for a pig trial (N = 6). Validation/calibration SV, SVmea, is from an aortic flow probe. Model parameters are identified in 3 ways: fitting to SVmea from the entire infusion, SVflfit, from the first 200 ml, SVfl200, or from the first 100 ml, SVfl100. RMSE compares error of model-based SV time-profiles for each parameter identification method, and polar plot analysis assesses trending ability. Receiver-operating characteristic (ROC) analysis evaluates ability of model-predicted SVs, SVfl200 and SVfl100, to distinguish non-responsive and responsive infusions, using area-under the curve (AUC), and balanced accuracy as a measure of performance. RESULTS: RMSE for SVflFit, SVfl200, and SVfl100 was 1.8, 3.2, and 6.5 ml, respectively, and polar plot angular limit of agreement from was 11.6, 28.0, and 68.8°, respectively. For predicting responsive and non-responsive interventions SVfl200, and SVfl100 had ROC AUC of 0.64 and 0.69, respectively, and balanced accuracy was 0.75 in both cases. CONCLUSIONS: The model-predicted SV time-profiles matched measured SV trends well for SVflFit, SVfl200, but not SVfl100. Thus, the model can fit the observed SV dynamics, and can deliver good SV prediction given a sufficient parameter identification period. This trial is limited by small numbers and provides proof-of-method, with further experimental and clinical investigation needed. Potentially, this method could deliver model-predicted SV time-profiles to guide fluid therapy decisions, or as part of a closed-loop fluid control system.


Subject(s)
Fluid Therapy , Hemodynamics , Animals , Humans , Area Under Curve , Heart , Stroke Volume , Swine
6.
Comput Biol Med ; 135: 104627, 2021 08.
Article in English | MEDLINE | ID: mdl-34247132

ABSTRACT

BACKGROUND: Determining physiological mechanisms leading to circulatory failure can be challenging, contributing to the difficulties in delivering effective hemodynamic management in critical care. Continuous, non-additionally invasive monitoring of preload changes, and assessment of contractility from Frank-Starling curves could potentially make it much easier to diagnose and manage circulatory failure. METHOD: This study combines non-additionally invasive model-based methods to estimate left ventricle end-diastolic volume (LEDV) and stroke volume (SV) during hemodynamic interventions in a pig trial (N = 6). Agreement of model-based LEDV and measured admittance catheter LEDV is assessed. Model-based LEDV and SV are used to identify response to hemodynamic interventions and create Frank-Starling curves, from which Frank-Starling contractility (FSC) is identified as the gradient. RESULTS: Model-based LEDV had good agreement with measured admittance catheter LEDV, with Bland-Altman median bias [limits of agreement (2.5th, 97.5th percentile)] of 2.2 ml [-13.8, 22.5]. Model LEDV and SV were used to identify non-responsive interventions with a good area under the receiver-operating characteristic (ROC) curve of 0.83. FSC was identified using model LEDV and SV with Bland-Altman median bias [limits of agreement (2.5th, 97.5th percentile)] of 0.07 [-0.68, 0.56], with FSC from admittance catheter LEDV and aortic flow probe SV used as a reference method. CONCLUSIONS: This study provides proof-of-concept preload changes and Frank-Starling curves could be non-additionally invasively estimated for critically ill patients, which could potentially enable much clearer insight into cardiovascular function than is currently possible at the patient bedside.


Subject(s)
Hemodynamics , Animals , Humans , Stroke Volume , Swine
7.
Comput Methods Programs Biomed ; 204: 106062, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33813060

ABSTRACT

BACKGROUND AND OBJECTIVES: Accurate, reproducible, and reliable real-time clinical measurement of stroke volume (SV) is challenging. To accurately estimate arterial mechanics and SV by pulse contour analysis, accounting for wave reflection, such as by a tube-load model, is potentially important. This study tests for the first time whether a dynamically identified tube-load model, given a single peripheral arterial input signal and pulse transit time (PTT), provides accurate SV estimates during hemodynamic instability. METHODS: The model is tested for 5 pigs during hemodynamic interventions, using either an aortic flow probe or admittance catheter for a validation SV measure. Performance is assessed using Bland-Altman and polar plot analysis for a series of long-term state-change and short-term dynamic events. RESULTS: The overall median bias and limits of agreement (2.5th, 97.5th percentile) from Bland-Altman analysis were -10% [-49, 36], and -1% [-28,20] for state-change and dynamic events, respectively. The angular limit of agreement (maximum of 2.5th, 97.5th percentile) from polar-plot analysis for state-change and dynamic interventions was 35.6∘, and 35.2∘, respectively. CONCLUSION: SV estimation agreement and trending performance was reasonable given the severity of the interventions. This simple yet robust method has potential to track SV within acceptable limits during hemodynamic instability in critically ill patients, provided a sufficiently accurate PTT measure.


Subject(s)
Hemodynamics , Pulse Wave Analysis , Animals , Arteries , Cardiac Output , Heart Rate , Humans , Stroke Volume , Swine
8.
J Clin Monit Comput ; 35(1): 79-88, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32048103

ABSTRACT

Identification of end systole is often necessary when studying events specific to systole or diastole, for example, models that estimate cardiac function and systolic time intervals like left ventricular ejection duration. In proximal arterial pressure waveforms, such as from the aorta, the dicrotic notch marks this transition from systole to diastole. However, distal arterial pressure measures are more common in a clinical setting, typically containing no dicrotic notch. This study defines a new end systole detection algorithm, for dicrotic notch-less arterial waveforms. The new algorithm utilises the beta distribution probability density function as a weighting function, which is adaptive based on previous heartbeats end systole locations. Its accuracy is compared with an existing end systole estimation method, on dicrotic notch-less distal pressure waveforms. Because there are no dicrotic notches defining end systole, validating which method performed better is more difficult. Thus, a validation method is developed using dicrotic notch locations from simultaneously measured aortic pressure, forward projected by pulse transit time (PTT) to the more distal pressure signal. Systolic durations, estimated by each of the end systole estimates, are then compared to the validation systolic duration provided by the PTT based end systole point. Data comes from ten pigs, across two protocols testing the algorithms under different hemodynamic states. The resulting mean difference ± limits of agreement between measured and estimated systolic duration, of [Formula: see text] versus [Formula: see text], for the new and existing algorithms respectively, indicate the new algorithms superiority.


Subject(s)
Arterial Pressure , Arteries , Animals , Blood Pressure , Hemodynamics , Pulse Wave Analysis , Swine , Systole
9.
HardwareX ; 9: e00178, 2021 Apr.
Article in English | MEDLINE | ID: mdl-35492046

ABSTRACT

Surface Electromyography (sEMG) is the non-invasive measurement of skeletal muscle contraction bio-potentials. Measuring sEMG of a stimulated muscle can prove particularly difficult due to large scale and long lasting stimulation-induced artefacts: if an sEMG device does not account for such artefacts, its measurements can be swamped and components damaged. sEMG has been used in a wide range of clinical and biomedical fields, providing measures such as muscular fatigue and subject intent. The recording of sEMG can prove difficult due to signal contamination such as movement artefact and mains interference. There are very few commercial sEMG devices that contain protection against large stimulation voltages or measures to reduce artefact transient times. Furthermore, most commercial or research level designs are not open source; these designs are effectively an inflexible black box to researchers and developers. This research presents the design, test and validation of an open source sEMG design, able to record muscle bio-potentials concurrently to electrical stimulation. The open source, low-cost nature of the design provides accessibility to researchers without the time and cost associated with design development. The design has been tested on the forearms of four able-bodied subjects during 25 Hz constant current stimulation, and has been shown to record subject volitional sEMG and M-wave without saturation.

10.
Comput Methods Programs Biomed ; 195: 105553, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32497771

ABSTRACT

BACKGROUND AND OBJECTIVES: Stroke volume (SV) and cardiac output (CO) are important metrics for hemodynamic management of critically ill patients. Clinically available devices to continuously monitor these metrics are invasive, and less invasive methods perform poorly during hemodynamic instability. Pulse wave velocity (PWV) could potentially improve estimation of SV and CO by providing information on changing vascular tone. This study investigates whether using PWV for parameter identification of a model-based pulse contour analysis method improves SV estimation accuracy. METHODS: Three implementations of a 3-element windkessel pulse contour analysis model are compared: constant-Z, water hammer, and Bramwell-Hill methods. Each implementation identifies the characteristic impedance parameter (Z) differently. The first method identifies Z statically and does not use PWV, and the latter two methods use PWV to dynamically update Z. Accuracy of SV estimation is tested in an animal trial, where interventions induce severe hemodynamic changes in 5 pigs. Model-predicted SV is compared to SV measured using an aortic flow probe. RESULTS: SV percentage error had median bias and [(IQR); (2.5th, 97.5th percentiles)] of -0.5% [(-6.1%, 4.7%); (-50.3%, +24.1%)] for the constant-Z method, 0.6% [(-4.9%, 6.2%); (-43.4%, +29.3%)] for the water hammer method, and 0.8% [(-6.5, 8.6); (-37.1%, +47.6%)] for the Bramwell-Hill method. CONCLUSION: Incorporating PWV for dynamic Z parameter identification through either the Bramwell-Hill equation or the water hammer equation does not appreciably improve the 3-element windkessel pulse contour analysis model's prediction of SV during hemodynamic changes compared to the constant-Z method.


Subject(s)
Hemodynamics , Pulse Wave Analysis , Animals , Blood Pressure , Cardiac Output , Heart Rate , Humans , Stroke Volume , Swine
11.
Data Brief ; 29: 105239, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32090160

ABSTRACT

Surface electromyography (sEMG) data was captured for three able-body subjects, from their right biceps brachii using the POLE sensor outlined in "Low-cost active electromyography" [1]. Data was captured for 45 seconds per subject, resulting in 12-21 contractions per subject. The raw data files, along with a sinusoidal waveform have been provided. This allows users of the POLE sensor to verify their low-cost sEMG device has been populated and configured correctly. This data also allows researchers/developers to compare their results against this low-cost, low noise sEMG device. The frequency content of the raw sEMG data is also of interest; this is calculated by applying a fast Fourier transform (FFT). The process applied to perform these algorithms is supplied in a MATLAB script.

12.
Comput Methods Programs Biomed ; 185: 105125, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31698169

ABSTRACT

BACKGROUND AND OBJECTIVES: Cardiovascular dysfunction can be more effectively monitored and treated, with accurate, continuous, stroke volume (SV) and/or cardiac output (CO) measurements. Since direct measurements of SV/CO are highly invasive, clinical measures are often discrete, or if continuous, can require recalibration with a discrete SV measurement after hemodynamic instability. This study presents a clinically applicable, non-additionally invasive, physiological model-based, SV and CO measurement method, which does not require recalibration during or after hemodynamic instability. METHODS AND RESULTS: The model's ability to predict flow profiles and SV is assessed in an animal trial, using endotoxin to induce sepsis in 5 pigs. Mean percentage error between beat-to-beat SV measured from an aortic flow probe and estimated by the model was -2%, while 90% of estimations fell within -24.2% and +27.9% error. Error between estimated and measured changes in mean SV following interventions was less than 30% for 4 out of the 5 pigs. Correlations between model estimated and probe measured flow, for each pig and hemodynamic interventions, was r2 = 0.58 - 0.96, with 21 of the 25 pig intervention stages having r2  >  0.80. CONCLUSION: The results demonstrate the model accurately estimates and tracks changes in flow profiles and resulting SV, without requiring model recalibration.


Subject(s)
Models, Biological , Stroke Volume/physiology , Animals , Aorta/physiology , Cardiac Output/physiology , Humans , Swine , Systole
13.
Curr Med Imaging Rev ; 15(2): 122-131, 2019.
Article in English | MEDLINE | ID: mdl-31975659

ABSTRACT

BACKGROUND: Early detection of breast cancer, combined with effective treatment, can reduce mortality. Millions of women are diagnosed with breast cancer and many die every year globally. Numerous early detection screening tests have been employed. A wide range of current breast cancer screening methods are reviewed based on a series of searchers focused on clinical testing and performance. DISCUSSION: The key factors evaluated centre around the trade-offs between accuracy (sensitivity and specificity), operator dependence of results, invasiveness, comfort, time required, and cost. All of these factors affect the quality of the screen, access/eligibility, and/or compliance to screening programs by eligible women. This survey article provides an overview of the working principles, benefits, limitations, performance, and cost of current breast cancer detection techniques. It is based on an extensive literature review focusing on published works reporting the main performance, cost, and comfort/compliance metrics considered. CONCLUSION: Due to limitations and drawbacks of existing breast cancer screening methods there is a need for better screening methods. Emerging, non-invasive methods offer promise to mitigate the issues particularly around comfort/pain and radiation dose, which would improve compliance and enable all ages to be screened regularly. However, these methods must still undergo significant validation testing to prove they can provide realistic screening alternatives to the current accepted standards.


Subject(s)
Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Adult , Age Factors , Aged , Aged, 80 and over , Breast Density , Early Detection of Cancer/trends , Elasticity Imaging Techniques/methods , Female , Humans , Magnetic Resonance Imaging/methods , Mammography/methods , Microwave Imaging , Middle Aged , Sensitivity and Specificity , Ultrasonography, Mammary/methods
14.
Comput Methods Programs Biomed ; 166: 9-18, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30415721

ABSTRACT

BACKGROUND AND OBJECTIVE: Hyperglycaemia is commonplace in the adult intensive care unit (ICU), and has been associated with increased morbidity and mortality. Effective glycaemic control (GC) can reduce morbidity and mortality, but has proven difficult. STAR is a model-based GC protocol that uniquely maintains normoglycaemia by changing both insulin and nutrition interventions, and has been proven effective in controlling blood glucose (BG) in the ICU. However, most ICU GC protocols only change insulin interventions, making the variable nutrition aspect of STAR less clinically desirable. This paper compares the performance of STAR modulating only insulin, with three simpler alternative nutrition protocols in clinically evaluated virtual trials. METHODS: Alternative nutrition protocols are fixed nutrition rate (100% caloric goal), CB (Cahill et al. best) stepped nutrition rate (60%, 80% and 100% caloric goal for the first 3 days of GC, and 100% thereafter) and SLQ (STAR lower quartile) stepped nutrition rate (65%, 75% and 85% caloric goal for the first 3 days of GC, and 85% thereafter). Each nutrition protocol is simulated with the STAR insulin protocol on a 221 patient virtual cohort, and GC performance, safety and total intervention workload are assessed. RESULTS: All alternative nutrition protocols considerably reduced total intervention workload (14.6-19.8%) due to reduced numbers of nutrition changes. However, only the stepped nutrition protocols achieved similar GC performance to the current variable nutrition protocol. Of the two stepped nutrition protocols, the SLQ nutrition protocol also improved GC safety, almost halving the number of severe hypoglycaemic cases (5 vs. 9, P = 0.42). CONCLUSIONS: Overall, the SLQ nutrition protocol was the best alternative to the current variable nutrition protocol, but either stepped nutrition protocol could be adapted by STAR to reduce workload and make it more clinically acceptable, while maintaining its proven performance and safety.


Subject(s)
Blood Glucose/analysis , Hypoglycemia/therapy , Insulin/chemistry , Nutritional Sciences/methods , Adult , Aged , Aged, 80 and over , Computer Simulation , Critical Care/methods , Critical Illness/therapy , Female , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Intensive Care Units , Male , Middle Aged , Software , Workload
15.
J Diabetes Sci Technol ; 12(5): 967-975, 2018 09.
Article in English | MEDLINE | ID: mdl-29998750

ABSTRACT

BACKGROUND: This study investigates blood glucose (BG) measurement interpolation techniques to represent intermediate BG dynamics, and the effect resampling of retrospective BG data has on key glycemic control (GC) performance results. GC protocols in the ICU have varying BG measurement intervals ranging from 0.5 to 4 hours. Sparse data pose problems, particularly in comparing GC performance or model fitting, and thus interpolation is required. METHODS: Retrospective data from SPRINT in Christchurch Hospital Intensive Care Unit (ICU) (2005-2007) were used to analyze several interpolation techniques. Piecewise linear, spline, and cubic interpolation functions, which force interpolation through measured data, as well as 1st and 2nd Order B-spline basis functions, are used to identify the interpolated trace. Dense data were thinned to increase sparsity and obtain measurements (Hidden Measurements) for comparison after interpolation. Performance is assessed based on error in capturing hidden measurements. Finally, the effect of minutely versus hourly sampling of the interpolated trace on key GC performance statistics was investigated using retrospective data received from STAR GC in Christchurch Hospital ICU, New Zealand (2011-2015). RESULTS: All of the piecewise functions performed considerably better than the fitted interpolation functions. Linear piecewise interpolation performed the best having a mean RMSE 0.39 mmol/L, within 2 standard deviations of the BG sensor error. Minutely sampled BG resulted in significantly different key GC performance values when compared to raw sparse BG measurements. CONCLUSION: Linear piecewise interpolation provides the best estimate of intermediate BG dynamics and all analyses comparing GC protocol performance should use minutely linearly interpolated BG data.


Subject(s)
Algorithms , Blood Glucose/analysis , Humans , Intensive Care Units , Retrospective Studies
16.
Comput Methods Programs Biomed ; 162: 149-155, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29903481

ABSTRACT

BACKGROUND AND OBJECTIVE: Blood glucose variability is common in healthcare and it is not related or influenced by diabetes mellitus. To minimise the risk of high blood glucose in critically ill patients, Stochastic Targeted Blood Glucose Control Protocol is used in intensive care unit at hospitals worldwide. Thus, this study focuses on the performance of stochastic modelling protocol in comparison to the current blood glucose management protocols in the Malaysian intensive care unit. Also, this study is to assess the effectiveness of Stochastic Targeted Blood Glucose Control Protocol when it is applied to a cohort of diabetic patients. METHODS: Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling. RESULTS: Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients. CONCLUSION: It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of uen model is also a must to adapt with the diabetic cohort.


Subject(s)
Blood Glucose , Diabetes Mellitus/blood , Intensive Care Units , Adult , Aged , Computer Simulation , Critical Care , Critical Illness , Diabetes Complications/blood , Diabetes Mellitus, Type 2/blood , Female , Humans , Hyperglycemia/drug therapy , Malaysia , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Stochastic Processes
17.
Biomed Eng Online ; 17(1): 24, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29463246

ABSTRACT

Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.


Subject(s)
Computer Simulation , Critical Care/methods , Models, Biological , Precision Medicine/methods , Cohort Studies , Humans , Physiological Phenomena
18.
Ann Intensive Care ; 8(1): 4, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29330610

ABSTRACT

BACKGROUND: Hyperglycaemia is commonplace in the adult intensive care unit (ICU), associated with increased morbidity and mortality. Effective glycaemic control (GC) can reduce morbidity and mortality, but has proven difficult. STAR is a proven, effective model-based ICU GC protocol that uniquely maintains normo-glycaemia by changing both insulin and nutrition interventions to maximise nutrition in the context of GC in the 4.4-8.0 mmol/L range. Hence, the level of nutrition it provides is a time-varying estimate of the patient-specific ability to take up glucose. METHODS: First, the clinical provision of nutrition by STAR in Christchurch Hospital, New Zealand (N = 221 Patients) is evaluated versus other ICUs, based on the Cahill et al. survey of 158 ICUs. Second, the inter- and intra- patient variation of nutrition delivery with STAR is analysed. Nutrition rates are in terms of percentage of caloric goal achieved. RESULTS: Mean nutrition rates clinically achieved by STAR were significantly higher than the mean and best ICU surveyed, for the first 3 days of ICU stay. There was large inter-patient variation in nutrition rates achieved per day, which reduced overtime as patient-specific metabolic state stabilised. Median intra-patient variation was 12.9%; however, the interquartile range of the mean per-patient nutrition rates achieved was 74.3-98.2%, suggesting patients do not deviate much from their mean patient-specific nutrition rate. Thus, the ability to tolerate glucose intake varies significantly between, rather than within, patients. CONCLUSIONS: Overall, STAR's protocol-driven changes in nutrition rate provide higher nutrition rates to hyperglycaemic patients than those of 158 ICUs from 20 countries. There is significant inter-patient variability between patients to tolerate and uptake glucose, where intra-patient variability over stay is much lower. Thus, a best nutrition rate is likely patient specific for patients requiring GC. More importantly, these overall outcomes show high nutrition delivery and safe, effective GC are not exclusive and that restricting nutrition for GC does not limit overall nutritional intake compared to other ICUs.

19.
IEEE Trans Biomed Eng ; 65(7): 1543-1553, 2018 07.
Article in English | MEDLINE | ID: mdl-28358672

ABSTRACT

BACKGROUND: Elevated blood glucose (BG) concentrations (Hyperglycaemia) are a common complication in critically ill patients. Insulin therapy is commonly used to treat hyperglycaemia, but metabolic variability often results in poor BG control and low BG (hypoglycaemia). OBJECTIVE: This paper presents a model-based virtual trial method for glycaemic control protocol design, and evaluates its generalisability across different populations. METHODS: Model-based insulin sensitivity (SI) was used to create virtual patients from clinical data from three different ICUs in New Zealand, Hungary, and Belgium. Glycaemic results from simulation of virtual patients under their original protocol (self-simulation) and protocols from other units (cross simulation) were compared. RESULTS: Differences were found between the three cohorts in median SI and inter-patient variability in SI. However, hour-to-hour intra-patient variability in SI was found to be consistent between cohorts. Self and cross-simulation results were found to have overall similarity and consistency, though results may differ in the first 24-48 h due to different cohort starting BG and underlying SI. CONCLUSIONS AND SIGNIFICANCE: Virtual patients and the virtual trial method were found to be generalisable across different ICUs. This virtual trial method is useful for in silico protocol design and testing, given an understanding of the underlying assumptions and limitations of this method.


Subject(s)
Blood Glucose , Computer Simulation , Hyperglycemia , Insulin Resistance/physiology , Models, Biological , Aged , Blood Glucose/analysis , Blood Glucose/physiology , Critical Illness , Databases, Factual , Female , Humans , Hyperglycemia/drug therapy , Hyperglycemia/physiopathology , Hyperglycemia/prevention & control , Insulin/administration & dosage , Insulin/pharmacokinetics , Insulin/therapeutic use , Male , Middle Aged , Retrospective Studies
20.
Comput Methods Programs Biomed ; 130: 175-85, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27208532

ABSTRACT

BACKGROUND: Respiratory system modelling can aid clinical decision making during mechanical ventilation (MV) in intensive care. However, spontaneous breathing (SB) efforts can produce entrained "M-wave" airway pressure waveforms that inhibit identification of accurate values for respiratory system elastance and airway resistance. A pressure wave reconstruction method is proposed to accurately identify respiratory mechanics, assess the level of SB effort, and quantify the incidence of SB effort without uncommon measuring devices or interruption to care. METHODS: Data from 275 breaths aggregated from all mechanically ventilated patients at Christchurch Hospital were used in this study. The breath specific respiratory elastance is calculated using a time-varying elastance model. A pressure reconstruction method is proposed to reconstruct pressure waves identified as being affected by SB effort. The area under the curve of the time-varying respiratory elastance (AUC Edrs) are calculated and compared, where unreconstructed waves yield lower AUC Edrs. The difference between the reconstructed and unreconstructed pressure is denoted as a surrogate measure of SB effort. RESULTS: The pressure reconstruction method yielded a median AUC Edrs of 19.21 [IQR: 16.30-22.47]cmH2Os/l. In contrast, the median AUC Edrs for unreconstructed M-wave data was 20.41 [IQR: 16.68-22.81]cmH2Os/l. The pressure reconstruction method had the least variability in AUC Edrs assessed by the robust coefficient of variation (RCV)=0.04 versus 0.05 for unreconstructed data. Each patient exhibited different levels of SB effort, independent from MV setting, indicating the need for non-invasive, real time assessment of SB effort. CONCLUSION: A simple reconstruction method enables more consistent real-time estimation of the true, underlying respiratory system mechanics of a SB patient and provides the surrogate of SB effort, which may be clinically useful for clinicians in determining optimal ventilator settings to improve patient care.


Subject(s)
Respiration, Artificial , Respiratory Mechanics , Humans , Work of Breathing
SELECTION OF CITATIONS
SEARCH DETAIL
...