Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(24): e202402644, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38716788

ABSTRACT

Molecular scaffolds that enable the combinatorial synthesis of new supramolecular building blocks are promising targets for the construction of functional molecular systems. Here, we report a supramolecular scaffold based on boroxine that enables the formation of chiral and ordered 1D supramolecular polymers, which can be easily functionalized for circularly polarized luminescence. The boroxine monomers are quantitatively synthesized in situ, both in bulk and in solution, from boronic acid precursors and cooperatively polymerize into 1D helical aggregates stabilized by threefold hydrogen-bonding and π-π stacking. We then demonstrate amplification of asymmetry in the co-assembly of chiral/achiral monomers and the co-condensation of chiral/achiral precursors in classical and in situ sergeant-and-soldiers experiments, respectively, showing fast boronic acid exchange reactions occurring in the system. Remarkably, co-condensation of pyrene boronic acid with a hydrogen-bonding chiral boronic acid results in chiral pyrene aggregation with circularly polarized excimer emission and g-values in the order of 10-3. Yet, the electron deficiency of boron in boroxine makes them chemically addressable by nucleophiles, but also sensitive to hydrolysis. With this sensitivity in mind, we provide first insights into the prospects offered by boroxine-based supramolecular polymers to make chemically addressable, functional, and adaptive systems.

2.
Angew Chem Int Ed Engl ; 61(41): e202206738, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36062929

ABSTRACT

The desire to construct complex molecular systems is driven by the need for technological (r)evolution and our intrinsic curiosity to comprehend the origin of life. Supramolecular chemists tackle this challenge by combining covalent and noncovalent reactions leading to multicomponent systems with emerging complexity. However, this synthetic strategy often coincides with difficult preparation protocols and a narrow window of suitable conditions. Here, we report on unsuspected observations of our group that highlight the impact of subtle "irregularities" on supramolecular systems. Based on the effects of pathway complexity, minute amounts of water in organic solvents or small impurities in the supramolecular building block, we discuss potential pitfalls in the study of complex systems. This article is intended to draw attention to often overlooked details and to initiate an open discussion on the importance of reporting experimental details to increase reproducibility in supramolecular chemistry.


Subject(s)
Solvents , Water , Reproducibility of Results , Solvents/chemistry , Water/chemistry
3.
J Am Chem Soc ; 143(18): 7189-7195, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33926182

ABSTRACT

In past studies, spin selective transport was observed in polymers and supramolecular structures that are based on homochiral building blocks possessing stereocenters. Here we address the question to what extent chiral building blocks are required for observing the chiral induced spin selectivity (CISS) effect. We demonstrate the CISS effect in supramolecular polymers exclusively containing achiral monomers, where the supramolecular chirality was induced by chiral solvents that were removed from the fibers before measuring. Spin-selective transport was observed for electrons transmitted perpendicular to the fibers' long axis. The spin polarization correlates with the intensity of the CD spectra of the polymers, indicating that the effect is nonlocal. It is found that the spin polarization increases with the samples' thickness and the thickness dependence is the result of at least two mechanisms: the first is the CISS effect, and the second reduces the spin polarization due to scattering. Temperature dependence studies provide the first support for theoretical work that suggested that phonons may contribute to the spin polarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...