Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(10): 1568-1577, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34676039

ABSTRACT

Glucocorticoids (GCs) are widely used in medicine for their role in the treatment of autoimmune-mediated conditions, certain cancers, and organ transplantation. The transcriptional activities GCs elicit include transrepression, postulated to be responsible for the anti-inflammatory activity, and transactivation, proposed to underlie the undesirable side effects associated with long-term use. A GC analogue that could elicit only transrepression and beneficial transactivation properties would be of great medicinal value and is highly sought after. In this study, a series of 1-(4-substituted phenyl)pyrazole-based GC analogues were synthesized, biologically screened, and evaluated for SARs leading to the desired activity. Activity observed in compounds bearing an electron deficient arylpyrazole moiety showed promise toward a dissociated steroid, displaying transrepression while having limited transactivation activity. In addition, compounds 11aa and 11ab were found to have anti-inflammatory efficacy comparable to that of dexamethasone at 10 nM, with minimal transactivation activity and no reduction of insulin secretion in cultured rat 832/13 beta cells.

2.
FEMS Microbiol Ecol ; 93(3)2017 03 01.
Article in English | MEDLINE | ID: mdl-28137764

ABSTRACT

Black band disease (BBD) of corals is a horizontally migrating, pathogenic, polymicrobial mat community which is active above a temperature threshold of 27.5°C on the reef. Bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of healthy corals and SML of healthy areas of BBD-infected corals were tested for production of short- to medium-chain acyl homoserine lactones (AHLs) using the Chromobacterium violaceum CV026 reporter strain. Of 110 bacterial isolates tested, 19 produced AHLs and 15 of these were from BBD. Eight AHLs were identified using LC-MS/MS, with 3OHC4 the most commonly produced, followed by C6. AHL-producing isolates exposed to three temperatures (24°C, 27°C, 30°C) revealed that production of three AHLs (3OHC4, 3OHC5 and 3OHC6) significantly increased at 30°C when compared to 24°C. 16S rRNA gene sequencing revealed that all of the AHL-producing BBD isolates were vibrios. Metagenomic data of BBD communities showed the presence of AHL (and autoinducer-2) genes, many of which are known to be associated with vibrios. These findings suggest that quorum sensing may be involved in BBD pathobiology and community structure due to enhanced production of quorum-sensing signal molecules (AHLs) above the temperature threshold of this globally distributed coral disease.


Subject(s)
Acyl-Butyrolactones/metabolism , Anthozoa/microbiology , Temperature , Vibrio/physiology , 4-Butyrolactone/analogs & derivatives , Animals , Chromobacterium , Coral Reefs , Homoserine/analogs & derivatives , Lactones , Quorum Sensing , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Vibrio/genetics , Water Microbiology
3.
Environ Sci Technol ; 49(10): 6214-21, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25919646

ABSTRACT

Bisphenol A (BPA), an environmental contaminant with weak estrogenic activity, resists microbial degradation under anoxic conditions but is susceptible to abiotic transformation by manganese dioxide (MnO2). BPA degradation followed pseudo-first-order kinetics with a rate constant of 0.96 (±0.03) min(-1) in the presence of 2 mM MnO2 (0.017% w/w) at pH 7.2. 4-hydroxycumyl alcohol (HCA) was the major transformation product, and, on a molar basis, up to 64% of the initial amount of BPA was recovered as HCA. MnO2 was also reactive toward HCA, albeit at 5-fold lower rates, and CO2 evolution (i.e., mineralization) occurred. In microcosms established with freshwater sediment, HCA was rapidly biodegraded under oxic, but not anoxic conditions. With a measured octanol-water partition coefficient (Log K(ow)) of 0.76 and an aqueous solubility of 2.65 g L(-1), HCA is more mobile in saturated media than BPA (Log K(ow) = 2.76; aqueous solubility = 0.31 g L(-1)), and therefore more likely to encounter oxic zones and undergo aerobic biodegradation. These findings corroborate that BPA is not inert under anoxic conditions and suggest that MnO2-mediated coupled abiotic-biotic processes may be relevant for controlling the fate and longevity of BPA in sediments and aquifers.


Subject(s)
Alcohols/chemistry , Benzhydryl Compounds/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Phenols/chemistry , Biodegradation, Environmental , Biotransformation , Buffers , Fresh Water , Hydrogen-Ion Concentration , Kinetics , Microbiota , Minerals/chemistry
4.
Appl Environ Microbiol ; 81(4): 1417-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25527537

ABSTRACT

The marine roseobacter Phaeobacter sp. strain Y4I synthesizes the blue antimicrobial secondary metabolite indigoidine when grown in a biofilm or on agar plates. Prior studies suggested that indigoidine production may be, in part, regulated by cell-to-cell communication systems. Phaeobacter sp. strain Y4I possesses two luxR and luxI homologous N-acyl-L-homoserine lactone (AHL)-mediated cell-to-cell communication systems, designated pgaRI and phaRI. We show here that Y4I produces two dominantAHLs, the novel monounsaturated N-(3-hydroxydodecenoyl)-L-homoserine lactone (3OHC(12:1)-HSL) and the relatively common N-octanoyl-L-homoserine lactone (C8-HSL), and provide evidence that they are synthesized by PhaI and PgaI, respectively.A Tn5 insertional mutation in either genetic locus results in the abolishment (pgaR::Tn5) or reduction (phaR::Tn5) of pigment production. Motility defects and denser biofilms were also observed in these mutant backgrounds, suggesting an overlap in the functional roles of these systems. Production of the AHLs occurs at distinct points during growth on an agar surface and was determined by isotope dilution high-performance liquid chromatography­tandem mass spectrometry (ID-HPLC-MS/MS) analysis.Within 2 h of surface inoculation, only 3OHC(12:1)-HSL was detected in agar extracts. As surface-attached cells became established (at approximately 10 h), the concentration of 3OHC(12:1)-HSL decreased, and the concentration of C8-HSL increased rapidly over 14 h.After longer (>24-h) establishment periods, the concentrations of the two AHLs increased to and stabilized at approximately 15 nM and approximately 600 nM for 3OHC12:1-HSL and C8-HSL, respectively. In contrast, the total amount of indigoidine increased steadily from undetectable to 642 Mby 48 h. Gene expression profiles of the AHL and indigoidine synthases (pgaI, phaI, and igiD) were consistent with their metabolite profiles. These data provide evidence that pgaRI and phaRI play overlapping roles in the regulation of indigoidine biosynthesis, and it is postulated that this allows Phaeobacter sp. strain Y4I to coordinate production of indigoidine with different growth-phase-dependent physiologies.


Subject(s)
Anti-Infective Agents/metabolism , Piperidones/metabolism , Rhodobacteraceae/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rhodobacteraceae/genetics , Rhodobacteraceae/growth & development , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Chemosphere ; 117: 521-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25268077

ABSTRACT

4-Methylphenol (4-MP), a putative bisphenol A (BPA) degradation intermediate, was detected at concentrations reaching 2.1 mg L(-1) in anoxic microcosms containing 10 mg L(-1) BPA and 5 g of freshwater sediment material collected from four geographically distinct locations and amended with nitrate, nitrite, ferric iron, or bicarbonate as electron acceptors. 4-MP accumulation was transient, and 4-MP degradation was observed under all redox conditions tested. 4-MP was not detected in microcosms not amended with BPA. Unexpectedly, incubations with (13)C-labeled BPA failed to produce (13)C-labeled 4-MP suggesting that 4-MP was not derived from BPA. The detection of 4-MP in live microcosms amended with lactate, but not containing BPA corroborated that BPA was not the source of 4-MP. These findings demonstrate that the transient formation of 4-MP as a possible BPA degradation intermediate must be interpreted cautiously, as microbial activity in streambed microcosms may generate 4-MP from sediment-associated organic material.


Subject(s)
Benzhydryl Compounds/metabolism , Cresols/metabolism , Geologic Sediments/analysis , Phenols/metabolism , Water Pollutants, Chemical/metabolism , Anaerobiosis , Benzhydryl Compounds/analysis , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Cresols/analysis , Environmental Monitoring , Fresh Water/analysis , Gas Chromatography-Mass Spectrometry , Phenols/analysis , Water Pollutants, Chemical/analysis
6.
PLoS One ; 9(9): e108541, 2014.
Article in English | MEDLINE | ID: mdl-25268348

ABSTRACT

Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.


Subject(s)
Acyl-Butyrolactones/metabolism , Anthozoa/microbiology , Cyanobacteria/metabolism , Homoserine/analogs & derivatives , Quorum Sensing , Acyl-Butyrolactones/isolation & purification , Acyl-Butyrolactones/pharmacology , Agrobacterium tumefaciens/drug effects , Agrobacterium tumefaciens/growth & development , Animals , Chromobacterium/drug effects , Chromobacterium/growth & development , Coral Reefs , Cyanobacteria/pathogenicity , Homoserine/biosynthesis , Homoserine/isolation & purification , Homoserine/pharmacology , Lactones/isolation & purification , Lactones/pharmacology , Microbial Consortia/physiology , Microbial Interactions , Pentanes/isolation & purification , Pentanes/metabolism , Pentanes/pharmacology , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/pharmacology , Vibrio/drug effects , Vibrio/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...