Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(21): 213601, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856273

ABSTRACT

We present a novel atom interferometer configuration that combines large momentum transfer with the enhancement of an optical resonator for the purpose of measuring gravitational strain in the horizontal directions. Using Bragg diffraction and taking advantage of the optical gain provided by the resonator, we achieve momentum transfer up to 8ℏk with mW level optical power in a cm-sized resonating waist. Importantly, our experiment uses an original resonator design that allows for a large resonating beam waist and eliminates the need to trap atoms in cavity modes. We demonstrate inertial sensitivity in the horizontal direction by measuring the change in tilt of our resonator. This result paves the way for future hybrid atom or optical gravitational wave detectors. Furthermore, the versatility of our method extends to a wide range of measurement geometries and atomic sources, opening up new avenues for the realization of highly sensitive inertial atom sensors.

2.
Opt Express ; 29(17): 27760-27767, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615185

ABSTRACT

A Watt-level continuous and single frequency blue laser at 461 nm is obtained by frequency-doubling an amplified diode laser operating at 922 nm via a LBO crystal in a resonant Fabry-Pérot cavity. We achieved a best optical conversion efficiency equal to 87% with more than 1 W output power in the blue, and limited by the available input power. The frequency-converted beam is characterized in terms of long term power stability, residual intensity noise, and geometrical shape. The blue beam has a linewidth of the order of 1 MHz, and we used it to magneto-optically trap 88Sr atoms on the 5s2 1S0 - 5s5p 1P1 transition. The low-finesse, linear-cavity doubling system is very robust, maintains the lock for several days, and is compatible with a tenfold increase of the power levels which could be obtained with fully-fibered amplifiers and large mode area fibers.

3.
Phys Rev Lett ; 127(1): 013202, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270276

ABSTRACT

We propose a method to exploit high-finesse optical resonators for light-assisted coherent manipulation of atomic ensembles, overcoming the limit imposed by the finite response time of the cavity. The key element of our scheme is to rapidly switch the interaction between the atoms and the cavity field with an auxiliary control process as, for example, the light shift induced by an optical beam. The scheme is applicable to other atomic species, both in trapped and free fall configurations, and can be adopted to control the internal and/or external atomic degrees of freedom. Our method will open new possibilities in cavity-aided atom interferometry and in the preparation of highly nonclassical atomic states.

4.
Rev Sci Instrum ; 91(3): 033203, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32260006

ABSTRACT

Experiments in Atomic, Molecular, and Optical (AMO) physics require precise and accurate control of digital, analog, and radio frequency (RF) signals. We present control hardware based on a field programmable gate array core that drives various modules via a simple interface bus. The system supports an operating frequency of 10 MHz and a memory depth of 8 M (223) instructions, both easily scalable. Successive experimental sequences can be stacked with no dead time and synchronized with external events at any instructions. Two or more units can be cascaded and synchronized to a common clock, a feature useful to operate large experimental setups in a modular way.

5.
Sci Rep ; 10(1): 3268, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32094360

ABSTRACT

We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.

6.
Sci Rep ; 8(1): 14064, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30218107

ABSTRACT

We present the MIGA experiment, an underground long baseline atom interferometer to study gravity at large scale. The hybrid atom-laser antenna will use several atom interferometers simultaneously interrogated by the resonant mode of an optical cavity. The instrument will be a demonstrator for gravitational wave detection in a frequency band (100 mHz-1 Hz) not explored by classical ground and space-based observatories, and interesting for potential astrophysical sources. In the initial instrument configuration, standard atom interferometry techniques will be adopted, which will bring to a peak strain sensitivity of [Formula: see text] at 2 Hz. This demonstrator will enable to study the techniques to push further the sensitivity for the future development of gravitational wave detectors based on large scale atom interferometers. The experiment will be realized at the underground facility of the Laboratoire Souterrain à Bas Bruit (LSBB) in Rustrel-France, an exceptional site located away from major anthropogenic disturbances and showing very low background noise. In the following, we present the measurement principle of an in-cavity atom interferometer, derive the method for Gravitational Wave signal extraction from the antenna and determine the expected strain sensitivity. We then detail the functioning of the different systems of the antenna and describe the properties of the installation site.

7.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29459413

ABSTRACT

The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

8.
Nat Commun ; 8: 15529, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569742

ABSTRACT

The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10-9, improving previous results by almost two orders of magnitude.

9.
Phys Rev Lett ; 114(1): 013001, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25615464

ABSTRACT

We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

10.
Philos Trans A Math Phys Eng Sci ; 372(2026)2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25202001

ABSTRACT

We have recently completed a measurement of the Newtonian constant of gravitation G using atomic interferometry. Our result is G=6.67191(77)(62)×10(-11) m(3) kg(-1) s(-2) where the numbers in parenthesis are the type A and type B standard uncertainties, respectively. An evaluation of the measurement uncertainty is presented and the perspectives for improvement are discussed. Our result is approaching the precision of experiments based on macroscopic sensing masses showing that the next generation of atomic gradiometers could reach a total relative uncertainty in the 10 parts per million range.

11.
Nature ; 510(7506): 518-21, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965653

ABSTRACT

About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G = 6.67191(99) × 10(-11) m(3) kg(-1) s(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.

12.
Rev Sci Instrum ; 83(10): 103101, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126745

ABSTRACT

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0 × 10(13) s(-1) cm(-2) at the oven temperature of 450 °C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

13.
Phys Rev Lett ; 106(3): 038501, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405305

ABSTRACT

We report on a precision measurement of gravitational acceleration using ultracold strontium atoms confined in an amplitude-modulated vertical optical lattice. An uncertainty Δg/g ≈ 10(-7) is reached by measuring at the 5th harmonic of the Bloch frequency. The value obtained with this microscopic quantum system is consistent with the one measured with a classical gravimeter. Using lattice modulation to prepare the atomic sample, we also achieve high visibility of Bloch oscillations for ∼ 20 s. These results can be of relevance for testing gravitational redshift and Newtonian law at micrometer scale.

14.
Phys Rev Lett ; 100(5): 050801, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18352354

ABSTRACT

We present a new measurement of the Newtonian gravitational constant G based on cold-atom interferometry. Freely falling samples of laser-cooled rubidium atoms are used in a gravity gradiometer to probe the field generated by nearby source masses. In addition to its potential sensitivity, this method is intriguing as gravity is explored by a quantum system. We report a value of G = 6.667 x 10(-11) m(3) kg(-1) s(-2), estimating a statistical uncertainty of +/-0.011 x 10(-11) m(3) kg(-1) s(-2) and a systematic uncertainty of +/-0.003 x 10(-11) m(3) kg(-1) s(-2). The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement accuracy below the 100 ppm level.

15.
Rev Sci Instrum ; 78(7): 075109, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17672795

ABSTRACT

We report on a system of well-characterized source masses and their precision positioning system for a measurement of the Newtonian gravitational constant G using atoms as probes. The masses are 24 cylinders of 50 mm nominal radius, 150.2 mm nominal height, and mass of about 21.5 kg, sintered starting from a mixture of 95.3% W, 3.2% Ni, and 1.5% Cu. Density homogeneity and cylindrical geometry have been carefully investigated. The positioning system independently moves two groups of 12 cylinders along the vertical direction by tens of centimeters with a reproducibility of a few microns. The whole system is compatible with a resolution DeltaG/G<10(-4).


Subject(s)
Calibration/standards , Gravitation , Micromanipulation/instrumentation , Equipment Design , Equipment Failure Analysis , Internationality , Micromanipulation/methods , Reference Values , Reproducibility of Results , Sensitivity and Specificity
16.
Article in English | MEDLINE | ID: mdl-16527534

ABSTRACT

We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.


Subject(s)
Lasers , Spectrum Analysis , Strontium/analysis , Spectrophotometry, Infrared
17.
Opt Lett ; 30(9): 997-9, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15906982

ABSTRACT

We demonstrate the possibility of extending the well-established metrological performance of optical frequency-comb synthesizers to the mid-IR region by phase locking the pump and signal lasers of a difference-frequency source to two near-IR teeth of an optical comb. An uncertainty of 800 Hz (1.1 x 10(-11)) in the absolute frequencies of CO2 transitions near 4.2 microm has been measured by cavity-enhanced saturated-absorption spectroscopy. Prospects for the creation of a new dense set of high-quality molecular frequency standards in the IR are discussed.

18.
Phys Rev Lett ; 91(24): 243002, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14683113

ABSTRACT

We report the direct frequency measurement of the visible 5s(2) 1S0-5s5p 3P1 intercombination line of strontium that is considered a possible candidate for a future optical-frequency standard. The frequency of a cavity-stabilized laser is locked to the saturated fluorescence in a thermal Sr atomic beam and is measured with an optical-frequency comb generator referenced to the SI second through a global positioning system signal. The 88Sr transition is measured to be at 434 829 121 311 (10) kHz. We measure also the 88Sr-86Sr isotope shift to be 163 817.4 (0.2) kHz.

19.
Opt Lett ; 25(18): 1382-4, 2000 Sep 15.
Article in English | MEDLINE | ID: mdl-18066224

ABSTRACT

A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while it is guided by a magnetic-field potential. We generate our multimode beam-splitter potential with two current-carrying wires upon a glass substrate combined with an external transverse bias field. The atoms are guided around curves and a beam-splitter region within a 10-cm guide length. We achieve a maximum integrated flux of 1.5x10(5)atoms/s with a current density of 5x10(4)amp/cm (2) in the 100-microm -diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio.

20.
Opt Lett ; 22(14): 1107-9, 1997 Jul 15.
Article in English | MEDLINE | ID: mdl-18185766

ABSTRACT

We present a novel type of dark spontaneous-force optical trap. The trap is based on a velocity-selective inhibition of repumping light absorption produced by electromagnetically induced transparency. Accumulation of cold cesium atoms in a dark state is observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...