Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19000, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347902

ABSTRACT

The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline. This article presents the cold-atom sources of MIGA, focusing on the design choices, the realization of the systems, the performances and the integration within the MIGA instrument.

2.
J Chem Phys ; 149(15): 154201, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30342456

ABSTRACT

The transfer of phase coherence from an ultrastable master laser to a distributed feedback diode laser, using an optical comb as a transfer oscillator, is obtained via a new scheme allowing continuous scanning across the whole tuning range of the slave laser together with absolute frequency determination. This is accomplished without phase lock loops, through a robust high-bandwidth feed-forward control acting directly on the slave laser output radiation. The correction is obtained by means of a dual-parallel Mach-Zehnder interferometer used as an optical single-sideband modulator. Coherence transfer across a master-slave frequency gap of 14 THz yields an ∼10 kHz linewidth providing high injection efficiency of an optical cavity with finesse 250 000. This allows demonstrating a cavity ring-down absorption spectrum of low-pressure ambient air over a 300 GHz spectral window.

3.
J Chem Phys ; 148(5): 054202, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29421905

ABSTRACT

We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at µbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.

4.
Opt Lett ; 40(22): 5176-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565828

ABSTRACT

An integrated single-sideband modulator is used as the sole wide-bandwidth frequency actuator in a Pound-Drever-Hall locking loop. Thanks to the large modulation bandwidth, the device enables a locking range of ±75 MHz and a control bandwidth of 5 MHz without the need for a second feedback loop. As applied to the coupling of an extended-cavity diode laser at 1.55 µm to a high-finesse optical cavity, the in-loop frequency noise spectral density reaches a minimum of 1 mHz/Hz(1/2) at 1 kHz.

5.
J Chem Phys ; 142(7): 074201, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25702008

ABSTRACT

Extreme frequency accuracy and high sensitivity are obtained with a novel comb-locked cavity-ring-down spectrometer operating in the near-infrared from 1.5 to 1.63 µm. A key feature of our approach is the tight frequency locking of the probe laser to the comb, ensuring very high reproducibility and accuracy to the frequency axis upon scanning the comb repetition rate, as well as an efficient light injection into a length-swept high-finesse passive cavity containing the gas sample. Spectroscopic tests on the (30012) ← (00001) P14e line of CO2 at ∼1.57 µm demonstrate an accuracy of ∼17 kHz on the line center frequency in a Doppler broadening regime over the time scale of about 5 min, corresponding to four consecutive spectral scans of the absorption line. Over a single scan, which consists of 1500 spectral points over 75 s, the limit of detection is as low as 5.7 × 10(-11) cm(-1).

6.
Appl Opt ; 45(4): 716-27, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16485683

ABSTRACT

We present a new retrieval model designed to analyze the observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is on board the ENVironmental SATellite (ENVISAT). The new geo-fit multitarget retrieval model (GMTR) implements the geo-fit two-dimensional inversion for the simultaneous retrieval of several targets including a set of atmospheric constituents that are not considered by the ground processor of the MIPAS experiment. We describe the innovative solutions adopted in the inversion algorithm and the main functionalities of the corresponding computer code. The performance of GMTR is compared with that of the MIPAS ground processor in terms of accuracy of the retrieval products. Furthermore, we show the capability of GMTR to resolve the horizontal structures of the atmosphere. The new retrieval model is implemented in an optimized computer code that is distributed by the European Space Agency as "open source" in a package that includes a full set of auxiliary data for the retrieval of 28 atmospheric targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...