Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 10(1): 297, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909024

ABSTRACT

KLHL14 is a substrate-binding subunit of Cullin-RING ligase 3 ubiquitin ligase complex, highly enriched in thyroid since early embryonic development, together with its antisense RNA KLHL14-AS. We have previously demonstrated that Klhl14-AS is a competing endogenous RNA regulating several differentiation and survival factors in thyroid cancer, acting as tumor suppressor. Recently, also KLHL14 has been shown to function as tumor suppressor in diffuse large B-cell lymphoma and in malignant mesothelioma. Here we show that KLHL14 expression is strongly reduced in anaplastic thyroid cancer, the less differentiated and most aggressive type of thyroid neoplasia. Such reduction is reproduced in different in vivo and in vitro models of thyroid cancer, being invariably associated with loss of differentiation. When Klhl14 expression is rescued in thyroid transformed cells, it reduces the cell proliferation rate and increase the number of apoptotic cells. On the other side, Klhl14 loss of function in normal thyroid cells affects the expression of several regulatory as well as functional thyroid markers. All these findings suggest that KLHL14 could be considered as a novel tumor suppressor in thyroid cancer, by also revealing its physiological role in the maintenance of a fully differentiated and functional thyroid phenotype.

2.
JACC Basic Transl Sci ; 8(9): 1123-1137, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37791311

ABSTRACT

Ischemic cardiac disease is a major cause of mortality worldwide. However, the exact molecular processes underlying this disorder are not fully known. This study includes a comprehensive and coordinated set of in vivo and in vitro experiments using human cardiac specimens from patients with postischemic heart failure (HF) and healthy control subjects, a murine model of HF, and cellular systems. These approaches identified for the first time a specific pattern of maladaptive chromatin remodeling, namely a double methylation of histone 3 at lysine 27 and a single methylation at lysine 36 (H3_K27me2K36me1) consistently induced by ischemic injury in all these settings: human HF; murine HF; and in vitro models. Mechanistically, this work demonstrates that this histone modification mediates the ischemia-induced transcriptional repression of PPARG coactivator 1α (PGC1α), master regulator of mitochondrial function and biogenesis. Intriguingly, both the augmented H3_K27me2K36me1 and the mitochondrial dysfunction ensued by PGC1α down-regulation were significantly attenuated by the treatment with ß-hydroxybutyrate, the most abundant ketone body in humans, revealing a novel pathway coupling metabolism to gene expression. Taken together, these findings establish maladaptive chromatin remodeling as a key mechanism in postischemic heart injury, functionally modulated by ketone bodies.

3.
Cell Mol Life Sci ; 80(11): 323, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819449

ABSTRACT

BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.


Subject(s)
Catecholamines , Doxorubicin , Rats , Mice , Animals , Catecholamines/metabolism , Mice, Inbred C57BL , Doxorubicin/adverse effects , Apoptosis , Myocytes, Cardiac/metabolism , Macrophages , Oxidative Stress
4.
Cytokine ; 169: 156298, 2023 09.
Article in English | MEDLINE | ID: mdl-37454543

ABSTRACT

N-formyl peptide receptors (FPRs) are seven-transmembrane, G protein-coupled receptors with a wide distribution in immune and non-immune cells, recognizing N-formyl peptides from bacterial and mitochondrial origin and several endogenous signals. Three FPRs have been identified in humans: FPR1, FPR2, and FPR3. Most FPR ligands can activate a pro-inflammatory response, while a limited group of FPR agonists can elicit anti-inflammatory and homeostatic responses. Annexin A1 (AnxA1), a glucocorticoid-induced protein, its N-terminal peptide Ac2-26, and lipoxin A4 (LXA4), a lipoxygenase-derived eicosanoid mediator, exert significant immunomodulatory effects by interacting with FPR2 and/or FPR1. The ability of FPRs to recognize both ligands with pro-inflammatory or inflammation-resolving properties places them in a crucial position in the balance between activation against harmful events and maintaince of tissue integrity. A new field of investigation focused on the role of FPRs in the setting of heart injury. FPRs are expressed on cardiac macrophages, which are the predominant immune cells in the myocardium and play a key role in heart diseases. Several endogenous (AnxA1, LXA4) and synthetic compounds (compound 43, BMS-986235) reduced infarct size and promoted the resolution of inflammation via the activation of FPR2 on cardiac macrophages. Further studies should evaluate FPR2 role in other cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/drug therapy , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/metabolism , Ligands , Peptides/chemistry , Inflammation/metabolism
5.
Cell Death Discov ; 9(1): 216, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393309

ABSTRACT

Thyroid cancer is the most prevalent endocrine malignancy and comprises a wide range of lesions subdivided into differentiated (DTC) and undifferentiated thyroid cancer (UTC), mainly represented by the anaplastic thyroid carcinoma (ATC). This is one of the most lethal malignancies in humankind leading invariably to patient death in few months. Then, a better comprehension of the mechanisms underlying the development of ATC is required to set up new therapeutic approaches. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not code for proteins. They show a strong regulatory function at both transcriptional and post-transcriptional level and are emerging as key players in regulating developmental processes. Their aberrant expression has been linked to several biological processes, including cancer, making them potential diagnostic and prognostic markers. We have recently analyzed the lncRNA expression profile in ATC through a microarray technique and have identified rhabdomyosarcoma 2-associated transcript (RMST) as one of the most downregulated lncRNA in ATC. RMST has been reported to be deregulated in a series of human cancers, to play an anti-oncogenic role in triple-negative breast cancer, and to modulate neurogenesis by interacting with SOX2. Therefore, these findings prompted us to investigate the role of RMST in ATC development. In this study we show that RMST levels are strongly decreased in ATC, but only slightly in DTC, indicating that the loss of this lncRNA could be related to the loss of the differentiation and high aggressiveness. We also report a concomitant increase of SOX2 levels in the same subset of ATC, that inversely correlated with RMST levels, further supporting the RMST/SOX2 relationship. Finally, functional studies demonstrate that the restoration of RMST in ATC cells reduces cell growth, migration and the stemness properties of ATC stem cells. In conclusion, these findings support a critical role of RMST downregulation in ATC development.

6.
Cancers (Basel) ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36358839

ABSTRACT

Adiposity and diabetes affect breast cancer (BC) progression. We addressed whether glucose may affect the interaction between mammary adipose tissue-derived mesenchymal stromal/stem cells (MAT-MSCs) and BC cells. Two-dimensional co-cultures and spheroids were established in 25 mM or 5.5 mM glucose (High Glucose-HG or Low Glucose-LG) by using MAT-MSCs and MCF7 or MDA-MB231 BC cells. Gene expression was measured by qPCR, while protein levels were measured by cytofluorimetry and ELISA. CD44high/CD24low BC stem-like sub-population was quantified by cytofluorimetry. An in vivo zebrafish model was assessed by injecting spheroid-derived labeled cells. MAT-MSCs co-cultured with BC cells showed an inflammatory/senescent phenotype with increased abundance of IL-6, IL-8, VEGF and p16INK4a, accompanied by altered levels of CDKN2A and LMNB1. BC cells reduced multipotency and increased fibrotic features modulating OCT4, SOX2, NANOG, αSMA and FAP in MAT-MSCs. Of note, these co-culture-mediated changes in MAT-MSCs were partially reverted in LG. Only in HG, MAT-MSCs increased CD44high/CD24low MCF7 sub-population and promoted their ability to form mammospheres. Injection in zebrafish embryos of HG spheroid-derived MCF7 and MAT-MSCs was followed by a significant cellular migration and caudal dissemination. Thus, MAT-MSCs enhance the aggressiveness of BC cells in a HG environment.

7.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884394

ABSTRACT

Non-resolving inflammation is an enabling feature of cancer. A novel super-family of lipid mediators termed Specialized Pro-resolving Mediators (SPMs) have a role as bioactive molecules mediating the resolution of inflammation in cancer biology. SPMs are derived from ω-3 and ω-6 polyunsaturated fatty acids through the activity of lipoxygenases. SPMs have been described to directly modulate cancer progression by interfering with the epithelial to mesenchymal transition and invasion of cancer cells. SPMs have also been demonstrated to act on several components of the tumor microenvironment (TME). Consistently with their natural immunomodulatory and anti-inflammatory properties, SPMs are able to reprogram macrophages to favor phagocytosis of cell debris, which are an important source of pro-inflammatory and pro-angiogenic signals; sustain a direct cytotoxic immune response against cancer cells; stimulate neutrophils anti-tumor activities; and inhibit the development of regulatory T and B cells, thus indirectly leading to enhanced anti-tumor immunity. Furthermore, the resolution pathways exert crucial anti-angiogenic functions in lung, liver, and gastrointestinal cancers, and inhibit cancer-associated fibroblast differentiation and functions in hepatocellular carcinoma and pancreatic cancer. The present review will be focused on the potential protective effects of resolution pathways against cancer, exerted by modulating different components of the TME.

8.
Mol Oncol ; 16(16): 2959-2980, 2022 08.
Article in English | MEDLINE | ID: mdl-35808840

ABSTRACT

Formyl peptide receptors (FPR1, FPR2 and FPR3) are innate immune sensors of pathogen and commensal bacteria and have a role in colonic mucosa homeostasis. We identified FPR1 as a tumour suppressor in gastric cancer cells due to its ability to sustain an inflammation resolution response with antiangiogenic potential. Here, we investigate whether FPR1 exerts similar functions in colorectal carcinoma (CRC) cells. Since it has been shown that the commensal bacterium Lactobacillus rhamnosus GG (LGG) can promote intestinal epithelial homeostasis through FPR1, we explored the possibility that it could induce proresolving and antiangiogenic effects in CRC cells. We demonstrated that pharmacologic inhibition or genetic deletion of FPR1 in CRC cells caused a reduction of proresolving mediators and a consequent upregulation of angiogenic factors. The activation of FPR1 mediates opposite effects. Proresolving, antiangiogenic and homeostatic functions were also observed upon treatment of CRC cells with supernatant of LGG culture, but not of other lactic acid or nonprobiotic bacteria (i.e. Bifidobacterium bifidum or Escherichia coli). These activities of LGG are dependent on FPR1 expression and on the subsequent MAPK signalling activation. Thus, the innate immune receptor FPR1 could be a regulator of the balance between microbiota, inflammation and cancer in CRC models.


Subject(s)
Colorectal Neoplasms , Lacticaseibacillus rhamnosus , Probiotics , Humans , Inflammation , Lacticaseibacillus rhamnosus/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism
9.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35246475

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent and deadly tumors worldwide. The majority of CRC is resistant to anti-programmed cell death-1 (PD-1)-based cancer immunotherapy, with approximately 15% with high-microsatellite instability, high tumor mutation burden, and intratumoral lymphocytic infiltration. Programmed death-ligand 1 (PD-L1)/PD-1 signaling was described in solid tumor cells. In melanoma, liver, and thyroid cancer cells, intrinsic PD-1 signaling activates oncogenic functions, while in lung cancer cells, it has a tumor suppressor effect. Our work aimed to evaluate the effects of the anti-PD-1 nivolumab (NIVO) on CRC cells. METHODS: In vitro NIVO-treated human colon cancer cells (HT29, HCT116, and LoVo) were evaluated for cell growth, chemo/radiotherapeutic sensitivity, apoptosis, and spheroid growth. Total RNA-seq was assessed in 6-24 hours NIVO-treated human colon cancer cells HT29 and HCT116 as compared with NIVO-treated PES43 human melanoma cells. In vivo mice carrying HT29 xenograft were intraperitoneally treated with NIVO, OXA (oxaliplatin), and NIVO+OXA, and the tumors were characterized for growth, apoptosis, and pERK1/2/pP38. Forty-eight human primary colon cancers were evaluated for PD-1 expression through immunohistochemistry. RESULTS: In PD-1+ human colon cancer cells, intrinsic PD-1 signaling significantly decreased proliferation and promoted apoptosis. On the contrary, NIVO promoted proliferation, reduced apoptosis, and protected PD-1+ cells from chemo/radiotherapy. Transcriptional profile of NIVO-treated HT29 and HCT116 human colon cancer cells revealed downregulation of BATF2, DRAM1, FXYD3, IFIT3, MT-TN, and TNFRSF11A, and upregulation of CLK1, DCAF13, DNAJC2, MTHFD1L, PRPF3, PSMD7, and SCFD1; the opposite regulation was described in NIVO-treated human melanoma PES43 cells. Differentially expressed genes (DEGs) were significantly enriched for interferon pathway, innate immune, cytokine-mediated signaling pathways. In vivo, NIVO promoted HT29 tumor growth, thus reducing OXA efficacy as revealed through significant Ki-67 increase, pERK1/2 and pP38 increase, and apoptotic cell reduction. Eleven out of 48 primary human colon cancer biopsies expressed PD-1 (22.9%). PD-1 expression is significantly associated with lower pT stage. CONCLUSIONS: In PD-1+ human colon cancer cells, NIVO activates tumor survival pathways and could protect tumor cells from conventional therapies.


Subject(s)
Colonic Neoplasms , Melanoma , Animals , Cell Proliferation , Colonic Neoplasms/drug therapy , Humans , Melanoma/drug therapy , Membrane Proteins/therapeutic use , Mice , Neoplasm Proteins , Nivolumab/pharmacology , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/therapeutic use
10.
Front Immunol ; 12: 685214, 2021.
Article in English | MEDLINE | ID: mdl-34220836

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a progressive symmetric inflammation of the joints resulting in bone erosion and cartilage destruction with a progressive loss of function and joint deformity. An increased number of findings support the role of innate immunity in RA: many innate immune mechanisms are responsible for producing several cytokines and chemokines involved in RA pathogenesis, such as Tumor Necrosis Factor (TNF)-α, interleukin (IL)-6, and IL-1. Pattern recognition receptors (PRRs) play a crucial role in modulating the activity of the innate arm of the immune response. We focused our attention over the years on the expression and functions of a specific class of PRR, namely formyl peptide receptors (FPRs), which exert a key function in both sustaining and resolving the inflammatory response, depending on the context and/or the agonist. We performed a broad review of the data available in the literature on the role of FPRs and their ligands in RA. Furthermore, we queried a publicly available database collecting data from 90 RA patients with different clinic features to evaluate the possible association between FPRs and clinic-pathologic parameters of RA patients.


Subject(s)
Arthritis, Rheumatoid/etiology , Immunity, Innate , Receptors, Formyl Peptide/immunology , Receptors, Pattern Recognition/immunology , Arthritis, Rheumatoid/pathology , Humans , Interleukin-6 , Tumor Necrosis Factor-alpha
11.
Cancers (Basel) ; 13(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578955

ABSTRACT

Pattern recognition receptors (PRR) promote inflammation but also its resolution. We demonstrated that a specific PRR-formyl peptide receptor 1 (FPR1)-sustains an inflammation resolution response with anti-angiogenic and antitumor potential in gastric cancer. Since toll-like receptor 7 (TLR7) is crucial in the physiologic resolution of airway inflammation, we asked whether it could be responsible for pro-resolving and anti-angiogenic responses in non-small cell lung cancer (NSCLC). TLR7 correlated directly with pro-resolving and inversely with angiogenic mediators in NSCLC patients, as revealed by a publicly available RNAseq analysis. In NSCLC cells, depletion of TLR7 caused an upregulation of angiogenic mediators and a stronger vasculogenic response of endothelial cells compared to controls, assessed by qPCR, ELISA, protein array, and endothelial cell responses. TLR7 activation induced the opposite effects. TLR7 silencing reduced, while its activation increased, the pro-resolving potential of NSCLC cells, evaluated by qPCR, flow cytometry, and EIA. The increased angiogenic potential of TLR7-silenced NSCLC cells is due to the lack of pro-resolving mediators. MAPK and STAT3 signaling are responsible for these activities, as demonstrated through Western blotting and inhibitors. Our data indicate that TLR7 sustains a pro-resolving signaling in lung cancer that inhibits angiogenesis. This opens new possibilities to be exploited for cancer treatment.

12.
J Exp Clin Cancer Res ; 40(1): 22, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413561

ABSTRACT

BACKGROUND: The programmed cell death-1 (PD-1) receptor and its ligands PD-L1 and PD-L2 are immune checkpoints that suppress anti-cancer immunity. Typically, cancer cells express the PD-Ls that bind PD-1 on immune cells, inhibiting their activity. Recently, PD-1 expression has also been found in cancer cells. Here, we analysed expression and functions of PD-1 in thyroid cancer (TC). METHODS: PD-1 expression was evaluated by immunohistochemistry on human TC samples and by RT-PCR, western blot and FACS on TC cell lines. Proliferation and migration of TC cells in culture were assessed by BrdU incorporation and Boyden chamber assays. Biochemical studies were performed by western blot, immunoprecipitation, pull-down and phosphatase assays. TC cell tumorigenicity was assessed by xenotransplants in nude mice. RESULTS: Human TC specimens (47%), but not normal thyroids, displayed PD-1 expression in epithelial cells, which significantly correlated with tumour stage and lymph-node metastasis. PD-1 was also constitutively expressed on TC cell lines. PD-1 overexpression/stimulation promoted TC cell proliferation and migration. Accordingly, PD-1 genetic/pharmacologic inhibition caused the opposite effects. Mechanistically, PD-1 recruited the SHP2 phosphatase to the plasma membrane and potentiated its phosphatase activity. SHP2 enhanced Ras activation by dephosphorylating its inhibitory tyrosine 32, thus triggering the MAPK cascade. SHP2, BRAF and MEK were necessary for PD-1-mediated biologic functions. PD-1 inhibition decreased, while PD-1 enforced expression facilitated, TC cell xenograft growth in mice by affecting tumour cell proliferation. CONCLUSIONS: PD-1 circuit blockade in TC, besides restoring anti-cancer immunity, could also directly impair TC cell growth by inhibiting the SHP2/Ras/MAPK signalling pathway.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Thyroid Neoplasms/drug therapy , Cell Proliferation , Humans , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction , Thyroid Neoplasms/pathology , Transfection
13.
Nutr Metab Cardiovasc Dis ; 30(11): 2085-2092, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32807637

ABSTRACT

BACKGROUND AND AIMS: Data from animals suggest that immunoglobulins G (IgG) play a mechanistic role in atherosclerosis and diabetes through endothelial dysfunction and insulin resistance. Patients with common variable immunodeficiency (CVID), who have low circulating levels of IgG and are treated with intravenous polyclonal IgG (IVIgG), may provide an ideal model to clarify whether circulating IgG modulate endothelial function and affect insulin sensitivity in humans. METHODS AND RESULTS: We studied 24 patients with CVID and 17 matched healthy controls (HC). Endothelial function was evaluated as flow mediated dilation (FMD) of the brachial artery at baseline and 1, 7, 14, and 21 days after IVIgG infusion in the CVID patients. We measured also plasma glucose, insulin, and calculated the HOMA-IR index. We also investigated the role of human IgG on the production of Nitric Oxide (NO) in vitro in Human Coronary Artery Endothelial Cells (HCAEC). Compared to HC, FMD of CVID patients was significantly impaired at baseline (9.4 ± 0.9 and 7.6 ± 0.6% respectively, p < 0.05) but rose above normal levels 1 and 7 days after IVIgG infusion to return at baseline at 14 and 21 days. Serum insulin concentration and HOMA-IR index dropped by 50% in CVID patients after IVIgG (p < 0.002 vs. baseline). In vitro IgG stimulated NO production in HCAEC. CONCLUSIONS: Reduced IgG levels are associated with endothelial dysfunction and IVIgG stimulates endothelial function directly while improving insulin sensitivity. The current findings may suggest an anti-atherogenic role of human IgG.


Subject(s)
Brachial Artery/drug effects , Common Variable Immunodeficiency/drug therapy , Endothelium, Vascular/drug effects , Immunoglobulin G/administration & dosage , Immunoglobulins, Intravenous/administration & dosage , Insulin Resistance , Vasodilation/drug effects , Adolescent , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Brachial Artery/metabolism , Brachial Artery/physiopathology , Case-Control Studies , Cells, Cultured , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Humans , Infusions, Intravenous , Insulin/blood , Male , Nitric Oxide/metabolism , Time Factors , Treatment Outcome , Young Adult
14.
Front Immunol ; 11: 1249, 2020.
Article in English | MEDLINE | ID: mdl-32636845

ABSTRACT

Resolvins, the member of specialized pro-resolving mediators, are produced from omega-3 polyunsaturated fatty acids as a response to an acute inflammatory process in that termination and resolution of inflammation. In the acute inflammation, these lipid mediators limit polymorphonuclear cells infiltration, proinflammatory cytokine production; promote efferocytosis, and regulate several cell types being important roles in innate and adaptive immunity. Any dysregulation or defect of the resolution phase result in prolonged, persistent inflammation and eventually fibrosis. Resolvins are implicated in the development of various chronic autoimmune diseases. Systemic sclerosis (SSc) is a very complicated, chronic autoimmune disorder proceeding with vasculopathy, inflammation, and fibrosis. Dysregulation of innate and adaptive immunity is another important contributing factor in the pathogenesis of SSc. In this review, we will focus on the different roles of this new family of lipid mediators, characterized by the ability to prevent the spread of inflammation and its chronicity in various ways and how they can control the development of fibrotic diseases like SSc.


Subject(s)
Docosahexaenoic Acids/immunology , Eicosapentaenoic Acid/immunology , Inflammation Mediators/immunology , Scleroderma, Systemic/immunology , Animals , Humans
15.
Cancers (Basel) ; 12(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979229

ABSTRACT

Our work is focused on the future clinical use of oncolytic viruses (OVs) for the treatment of aggressive thyroid carcinomas. Therefore, we provide a brief description of the overall use of OVs in the clinic. Rigvir is among the few OVs that have already been used for the treatment of patients, and studies describing its effects have been briefly commented and cited in our text [1]. [...].

16.
Cancers (Basel) ; 11(10)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31636245

ABSTRACT

Virotherapy is a novel cancer treatment based on oncolytic viruses (OVs), which selectively infect and lyse cancer cells, without harming normal cells or tissues. Several viruses, either naturally occurring or developed through genetic engineering, are currently under investigation in clinical studies. Emerging reports suggesting the immune-stimulatory property of OVs against tumor cells further support the clinical use of OVs for the treatment of lesions lacking effective therapies. Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC), have a poor prognosis and limited treatment options. Therefore, several groups investigated the therapeutic potential of OVs in PDTC/ATC models producing experimental data sustaining the potential clinical efficacy of OVs in these cancer models. Moreover, the presence of an immunosuppressive microenvironment further supports the potential use of OVs in ATC. In this review, we present the results of the studies evaluating the efficacy of OVs alone or in combination with other treatment options. In particular, their potential therapeutic combination with multiple kinases inhibitors (MKIs) or immune checkpoint inhibitors are discussed.

17.
Cancers (Basel) ; 11(6)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181609

ABSTRACT

Papillary thyroid carcinomas (PTCs) have an excellent prognosis, but a fraction of them show aggressive behavior, becoming radioiodine (RAI)-resistant and/or metastatic. AXL (Anexelekto) is a tyrosine kinase receptor regulating viability, invasiveness and chemoresistance in various human cancers, including PTCs. Here, we analyze the role of AXL in PTC prognosis and as a marker of RAI refractoriness. Immunohistochemistry was used to assess AXL positivity in a cohort of human PTC samples. Normal and cancerous thyroid cell lines were used in vitro for signaling, survival and RAI uptake evaluations. 38.2% of human PTCs displayed high expression of AXL that positively correlated with RAI-refractoriness and disease persistence or recurrence, especially when combined with v-raf murine sarcoma viral oncogene homolog B(BRAF) V600E mutation. In human PTC samples, AXL expression correlated with V-akt murine thymoma viral oncogene homolog 1 (AKT1) and p65 nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation levels. Consistently, AXL stimulation with its ligand growth arrest-specific gene 6 (GAS6) increased AKT1- and p65 NF-kB-phosphorylation and promoted survival of thyroid cancer cell lines in culture. Enforced expression or activation of AXL in normal rat thyroid cells significantly reduced the expression of the sodium/iodide symporter (NIS) and the radioiodine uptake. These data indicate that AXL expression levels could be used as predictor of RAI refractoriness and as a possible novel therapeutic target of RAI resistant PTCs.

18.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-30854191

ABSTRACT

Tumors modulate the host immune cells within their microenvironment to avoid recognition and elimination by our immune system, a phenotype called cancer immune escape. Different mechanisms responsible for cancer immune escape that result either in decreased tumor immunogenicity or in increased tumor immunosuppressive activity have been identified. Recently, various immunotherapeutic approaches have been developed with the aim to revert tumor immune escape. The aims of this review are to explore the immunological aspects of thyroid cancer and to assess whether these features can be exploited in the prognosis and treatment of advanced forms of this disease. Therefore, we will describe the immune landscape and phenotypes of thyroid cancer, summarize studies investigating the expression of immunomodulatory molecules, and finally describe the preclinical and clinical trials investigating the utility of immunotherapies in the management of thyroid cancer. The aim of this review is to explore the immunological aspects of thyroid cancer and to assess whether these features can be exploited in the prognosis and treatment of advanced forms of this disease. Therefore, we will describe the immune-landscape and phenotypes of thyroid cancer, we will summarize studies investigating the expression of immunomodulatory molecules, and we will finally describe the preclinical and clinical trials investigating the utility of immunotherapies in the management of thyroid cancer.


Subject(s)
Immunomodulation , Thyroid Neoplasms/immunology , Tumor Escape , Tumor Microenvironment , Clinical Trials as Topic , Humans , Immunotherapy , Phenotype
19.
J Cell Physiol ; 234(7): 11861-11870, 2019 07.
Article in English | MEDLINE | ID: mdl-30536670

ABSTRACT

Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Tyrosine 3-Monooxygenase/drug effects , Animals , Cell Hypoxia/physiology , Dopamine/metabolism , Insulin/metabolism , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Rats , Transcriptional Activation/physiology , Tyrosine 3-Monooxygenase/metabolism , Up-Regulation
20.
Cell Death Discov ; 4: 25, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29531822

ABSTRACT

The modern understanding of the G protein-coupled receptor kinase 2 has grown towards the definition of a stress protein, for its ability to rapidly compartmentalize within the cell in response to acute stimulation. Also, mitochondria can be regulated by GRK2 localization. We show that Ionizing Radiation (IR) exposure acutely damages mitochondria regarding mass, morphology, and respiration, with recovery in a framework of hours. This phenomenon is actively regulated by GRK2, whose overexpression results to be protective, and reciprocally, deletion accelerates degenerative processes. The regulatory effects of the kinase involve a new interactome that includes binding HSP90 and binding and phosphorylation of the key molecules involved in the process of mitochondrial fusion and recovery: MFN-1 and 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...