Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; 41(8): e1900601, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32053268

ABSTRACT

The use of conjugated polymer nanoparticles (CP NPs) of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and poly(9,9-di-n-octylfluorenyl-2,7-diyl) as efficient photoinitiator systems (PIS) of vinyl polymerization in water is reported herein. CP NPs are biocompatible, excitable with blue commercial LEDs and, unlike visible light Type II PIS, do not need co-initiators to trigger a monomer chain reaction. CP NPs photoinitiate polymerization of a variety of acrylic monomers with initiation rates comparable to those observed for well-known Type II PIS. Given the extraordinarily large molar absorption coefficients of CP NPs (≈108 m-1 cm-1 ) very low particle concentration is required for effective polymerization. Additionally, CP NPs behave as conventional macrophotoinitiators significantly reducing contamination risks due to leaching of low molecular weight byproducts. These combined features make CP NPs PIS suitable to synthesize polymeric materials for many healthcare and biomedical applications including drug delivery, tissue engineering, prosthetic implants, and food/medicine packaging. These CP NPs PIS are also used to synthesize nano-hydrogels with a relatively narrow and controlled size distribution in the absence of surfactants. It is proposed that polymerization is initiated at the CP NPs surface by photogenerated free polarons, in close analogy to the mechanism previously described for PIS based on inorganic semiconductor NPs.


Subject(s)
Light , Nanoparticles/chemistry , Polymers/chemistry , Vinyl Compounds/chemical synthesis , Particle Size , Polymerization , Solubility , Surface Properties , Vinyl Compounds/chemistry , Water/chemistry
2.
Mater Sci Eng C Mater Biol Appl ; 102: 896-905, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31147061

ABSTRACT

The development of convenient synthetic methods and improved materials for the production of high load-capacity and biocompatible drug delivery systems is a challenging task with important implications in health sciences. In this work, acrylamide/2-hydroxyethylmethacrylate and N-isopropylacrylamide/2-hydroxyethylmethacrylate hydrogels were synthesized by photopolymerization using energy-efficient green-LEDs. A functionalized silsesquioxane was used as both crosslinker and co-initiator for the photopolymerization. The hybrid organic-inorganic nature of the silsesquioxane improved the resulting hydrogels' properties increasing their swelling capacity and biocompatibility. Additionally, the mild conditions used during the photopolymerization allowed the synthesis of hydrogels in the presence of antibiotics yielding high load-capacity materials in which the drug preserves its molecular structure and antimicrobial activity (as confirmed by HPLC and microbiological assays). The materials were characterized by FTIR, DSC and SEM. Additionally, the kinetics of gels´ swelling and drug release were studied under physiological conditions (pH 7.4 and 37 °C). The results demonstrate how hydrogel composition affects the antibiotics-release kinetics. The final drug release percentage increased with increasing molar fraction of acrylamide or N-isopropylacrylamide and in most cases exceeded 85%. Finally, the antibacterial effect of loaded gels was characterized using a number of assays against Gram negative and Gram positive bacteria. The observed antibacterial effect correlated well with swelling and drug release results. Furthermore, gels are not toxic for isolated erythrocytes as demonstrated by haemolytic tests. Overall, our results indicate that the produced hydrogels are promising materials to develop controlled drug-delivery devices such as capsules, dermatological patches and others.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Polymerization , Acrylamides/chemistry , Ampicillin/pharmacology , Delayed-Action Preparations/pharmacology , Drug Liberation , Escherichia coli/drug effects , Escherichia coli/growth & development , Gentamicins/pharmacology , Hemolysis/drug effects , Humans , Hydrogels/chemical synthesis , Kinetics , Methacrylates/chemistry , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Water
3.
Photochem Photobiol ; 94(6): 1129-1137, 2018 11.
Article in English | MEDLINE | ID: mdl-30312475

ABSTRACT

The photophysical and photochemical properties of the xanthene dyes mercurochrome (MCr) and eosin-Y (Eos); and the phenazine dye safranine-O (SF) are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of low generations. The dendrimers produce a red shift in the UV-vis absorption spectra of the dyes, which increases with concentration and the size of the PAMAM molecule. The Stern-Volmer plots of fluorescence quenching for xanthenic dyes present a downward curvature. It is ascribed to a static mechanism involving a dye-dendrimer binding. A non-linear fitting of the SV plots allows the calculation of the binding constants. For SF, the fluorescence is only slightly quenched by PAMAMs and the SV plots are linear. The binding constants are in the order Kbind (SF) ≪ Kbind (Eos) < Kbind (MCr). The difference must be due to important specific structural effects. A decrease in the triplet lifetime and an increase in the absorption of the semireduced form of the dyes are observed in the presence of dendrimers. While for the two xanthene dyes, the rate constants reach the diffusional limit for G2 and G3, for SF they are one order of magnitude lower. This is explained by a different quenching mechanism of the two types of dyes.

4.
Photochem Photobiol Sci ; 17(5): 652-659, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29708565

ABSTRACT

The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.

5.
Chemphyschem ; 19(8): 934-942, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29316109

ABSTRACT

The photophysical and photochemical properties of the xanthene dyes Eosin Y, Erythrosin B, and Rose Bengal are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of relatively high generation (G3-G5) in alkaline aqueous solution. UV/Vis absorption and fluorescence spectra of the dyes show bathochromic shifts, which correlate with the size of the dendrimer. Binding constants (Kbind ) are calculated from absorption data. The resulting high Kbind values indicate strong interactions between both molecules. Triplet-triplet absorption spectra of the dyes are recorded by laser flash photolysis, and a decrease in the triplet lifetimes is observed in the presence of dendrimers. At the same time, an increase in the absorption of the semireduced form of the dyes is observed. Rate constants for triplet quenching (3 kq ) and radical quantum yields (ΦR ) are obtained. The results are explained by a very efficient electron-transfer process from PAMAM to xanthene dyes for all of the dye/dendrimer couples that are evaluated.

6.
Photochem Photobiol Sci ; 14(2): 407-13, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25428794

ABSTRACT

The interaction of the triplet state of the synthetic dye phenosafranine (3,7-diamino-5-phenylphenazinium chloride) with indolic compounds of biological relevance was investigated in water by means of laser flash photolysis. The rate constants for the triplet quenching were determined. The quenching process may be explained by an electron transfer from the indole to the dye in its triplet state. The rate constants present a typical dependence of an electron transfer process with the one-electron oxidation potential of the indole. Indole-3-acetic acid and its homologous indole propionic and indole butyric acids are the most effective quenchers with rate constants reaching the diffusion limit. Rate constants for indole itself, tryptophan and indole-3 carboxylic acid are one order of magnitude lower. The electron transfer nature of the quenching reaction is further confirmed by the detection of the semi-reduced form of the dye by its transient absorption. The absorption coefficients of the transient species were estimated, and the quantum yield of the charge separation process was determined. The efficiency of formation of radical species is between 60 and 90% of the triplets intercepted.

7.
Photochem Photobiol Sci ; 12(12): 2146-59, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100520

ABSTRACT

We report herein a study on photoinduced electron transfer (eT) and energy transfer (ET) processes occurring between 9-methylanthracene-acrylate (A) and N,N-dimethylaniline-acrylate (D) derivatives incorporated into polymeric nanoparticles (NP). Five types of NPs were synthesized: PAD0, PAD25, PAD75, PD25, and PD75. All NPs are composed of a crosslinked polymer matrix of methyl methacrylate and ethylene glycol dimethacrylate. In addition, PAD0, PAD25 and PAD75 contain low doping levels of A. For PAD25 and PAD75, 25% and 75% of the mole fraction of methyl methacrylate is replaced by D, respectively. PD25 and PD75 were prepared as above but without A. NPs (diameter 6-9 nm) dispersed in organic solvents were characterized based on their UV-visible absorption, emission, excitation, and excitation anisotropy spectra and time dependent absorption and emission spectroscopy techniques. The emission decay profiles of A and D were always complex. Results indicate that A senses two distinct environments in all NPs. The emission quenching of PAD0 by DMA in DCM solutions is dynamic, and it is apparent that a significant fraction of A is inaccessible to the quencher. The emission of A is efficiently quenched by the presence of D in PAD25 and PAD75. The intra-NP photoinduced eT quenching mechanism has static and dynamic components. Selective excitation of D in PAD25 and PAD75 leads to the formation of the excited state of A via a singlet-singlet ET Föster type mechanism. Results indicate that both intra-NP eT and ET processes are more efficient in PAD75 due to the reduced average D*-A separation in these NPs.

8.
Photochem Photobiol ; 89(6): 1442-7, 2013.
Article in English | MEDLINE | ID: mdl-23647226

ABSTRACT

Electron transfer (ET) rate constants were determined by means of lifetime measurements for the fluorescence quenching and by laser flash photolysis for the triplet quenching of the dye eosin Y by benzoquinones in acetonitrile. The results represent a new aspect of the dependence of the rate constants with the driving force in the diffusion limit region. That is, the rate constants for singlet quenching in the highly negative region of ΔGet do not decrease as predicted by Marcus theory, but rather show a small positive dependence on the driving force. However, it is found that, in the same free energy range, the triplet rate constants are lower than those for the singlet process. They also increase with the exergonicity of the reaction, but the dependence with ΔGet is less marked than that found for the singlet reaction. Even at a Gibbs energy change of -1.0 eV the triplet quenching rate constants do not reach the theoretical diffusion limit. The results are analyzed using the current theories for diffusion-mediated ET reactions.


Subject(s)
Eosine Yellowish-(YS)/chemistry , Quinones/chemistry , Diffusion , Electron Transport , Kinetics
9.
Photochem Photobiol Sci ; 11(2): 302-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22105094

ABSTRACT

The photophysics of Safranine-O (3,6-diamino-2,7-dimethyl-5 phenyl phenazinium chloride) (SfH(+)Cl(-)) was investigated in reverse micelles (RMs) of AOT (sodium bis(2-ethylhexyl)sulfosuccinate) with special emphasis on the triplet state processes. The triplet is formed in its monoprotonated form, independently of the pH of the water used to prepare the RMs. While the intersystem crossing quantum yields in RMs are similar to those in organic solvents, the triplet lifetime is much longer. Since the pH in the water pool of AOT RMs is close to 5 and the triplet state of the dye is subjected to proton quenching, the long lifetime indicates that the dye resides in a region where it cannot be reached by protons during its lifetime. All the measurements indicate that the dye is localized in the interface, sensing a medium of micropolarity similar to EtOH : water (3:1) mixtures. The quenching by aliphatic amines was also investigated. While the quenching by the hydrophobic tributylamine is similar to that in methanol, the hydro-soluble triethanolamine is one order of magnitude more effective in RMs than in homogeneous solution. In the latter case the quenching process is interpreted by a very fast intramicellar quenching, the overall kinetics being controlled by the exchange of amine molecules between RMs. Semireduced dye is formed in the quenching process in RMs in the di-protonated state with a comparable quantum yield to the monoprotonated state formed in homogeneous solvents. The results point to the advantage of the reverse micellar system for the generation of active radicals for the initiation of vinyl polymerization, since a much lower concentration of amine can be employed with similar quantum yields.


Subject(s)
Amines/chemistry , Dioctyl Sulfosuccinic Acid/chemistry , Micelles , Phenazines/chemistry , Spectrum Analysis , Absorption , Ethanolamines/chemistry , Free Radicals/chemistry
10.
Photochem Photobiol Sci ; 9(5): 675-86, 2010 May.
Article in English | MEDLINE | ID: mdl-20442927

ABSTRACT

We report herein the solvent and temperature effects on the emission of the intermolecular exciplexes 1-cyanonaphthalene/triethylamine and 1-methylnaphthalene/triethylamine and the intramolecular exciplexes formed by the bichromophoric compounds diethyl-(3-naphthalen-1-yl-propyl)-amine (I), diethyl-(2-naphthalen-1-yl-ethyl)-amine (II), 3-[ethyl-(2-naphthalen-1-yl-ethyl)-amino]-propionitrile (III) and 3-[(2-cyano-ethyl)-(2-naphthalen-1-yl-ethyl)-amino]-propionitrile (IV). The results are interpreted within the formalism of the semiclassical Marcus theory for radiative back electron transfer (BET) reactions. We show that, following a few simple assumptions, reliable values of the Gibbs free energy changes (DeltaG(epsilon)(-et)) and the solvent reorganization energies (lambda(epsilon)(s)) associated to the BET reactions (and their corresponding enthalpic and entropic contributions) can be estimated directly from the emission of the CT states. We also show that for the 1-cyanonaphthalene/triethylamine exciplex, which exhibits emission in the vapour phase, the experimental calculation of the absolute energy of solvation of the CT state (DeltaG(epsilon)(s)) is also possible. The calculated DeltaG(epsilon)(-et) correlate quite satisfactorily with the corresponding values obtained from independent electrochemical and kinetics experiments. The temperature effects on DeltaG(epsilon)(-et), lambda(epsilon)(s) and DeltaG(epsilon)(s) are discussed qualitatively using different solvation models. The limitations of the present approach for the estimation of DeltaG(epsilon)(-et) and lambda(epsilon)(s) and its possible application to more complex A/D systems are also examined.

11.
Photochem Photobiol Sci ; 7(1): 104-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18167603

ABSTRACT

Electron-transfer rate constants were determined by means of lifetime measurements for the fluorescence quenching of 9,10-dicyanoanthracene by aromatic amines and methoxybenzenes as electron donors, and for the quenching of the synthetic dyes eosin Y and phenosafranine by a series of p-benzoquinones as electron acceptors. All determinations were carried out in acetonitrile at 298 K. The quenching rate constants (k(q)) in the region of -1.9 eV < DeltaG(et) < -0.2 eV do not decrease as predicted by Marcus theory, but they show a small increase with decreasing DeltaG(et). Although this behaviour is in qualitative agreement with the current theories for reactive systems in the diffusion limit region, a closer analysis of the experimental data showed that several aspects of the dependence of the k(q) on DeltaG(et) are not entirely explained, suggesting that new, refined theoretical models may be required.

12.
J Phys Chem A ; 112(4): 589-93, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18177025

ABSTRACT

The fluorescence quenching of pyrene (Py) by a series of N-methyl and N-H substituted indoles was studied in isooctane at 298 K. The fluorescence quenching rate constants were evaluated by mean of steady-state and time-resolved measurements. In all cases, the quenching process involves a charge-transfer (CT) mechanism. The I(o)/I and tau(o)/tau Stern-Volmer plots obtained for the N-H indoles show a very unusual upward deviation with increasing concentration of the quenchers. This behavior is attributed to the self-quenching of the CT intermediates by the free indoles in solution. The efficiency of quenching of the polyaromatic by the N-H indoles increases abruptly in the presence of small amount of added pyridine (or propanol). A detailed analysis of the experimental data obtained in the presence of pyridine provides unambiguous evidence that the self-quenching process involves proton transfer from the CT states to indoles.


Subject(s)
Indoles/chemistry , Octanes/chemistry , Pyrenes/chemistry , Fluorescence , Molecular Structure , Protons , Reproducibility of Results , Solutions/chemistry , Spectrometry, Fluorescence
13.
Phys Chem Chem Phys ; 9(45): 5988-96, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-18004411

ABSTRACT

Tetraalkylammonium salts, characterized by an aromatic system pending from one of the alkyl chains, are taken as model systems to study the spectroscopic and redox properties of the aromatic centre under the field effects exerted by the charged group through alkyl bridges of varying length. The changes in the aromatic's redox properties, due to the net field effect and its different components, are interpreted on theoretical bases.


Subject(s)
Cations/chemistry , Electrons , Hydrocarbons, Aromatic/chemistry , Alkanes/chemistry , Models, Theoretical , Oxidation-Reduction , Static Electricity , Thermodynamics
14.
Photochem Photobiol ; 83(3): 535-41, 2007.
Article in English | MEDLINE | ID: mdl-17576369

ABSTRACT

The quenching of the excited singlet and triplet states of phenosafranine by aliphatic amines was investigated in acetonitrile and methanol. The rate constants for the quenching of the excited singlet state depend on the one-electron redox potential of the amine suggesting a charge transfer process. However, for the triplet state, quenching dependence on the redox potential either is opposite to the expectation or there is not dependence at all. Moreover, in MeOH the first-order rate constant for the decay of the triplet state, k(obs) presents a downward curvature as a function of the amine concentration. This behavior was interpreted in terms of the reversible formation of an intermediate excited complex, and from a kinetic analysis the equilibrium constant K(exc) could be extracted. The log K(exc) shows a linear relationship with the pKb of the amine. On the other hand, for the triplet state quenching in acetonitrile k(obs) varies linearly with the amine concentration. Nevertheless, the quenching rate constants correlate satisfactorily with pKb and not with the redox potential. The results were interpreted in terms of a proton transfer quenching, reversible in the case of MeOH and irreversible in MeCN. This was further confirmed by the transient absorption spectra obtained by laser flash photolysis. The transient absorption immediately after the triplet state quenching could be assigned to the unprotonated form of the dye. At later times the spectrum matches the semireduced form of the dye. The overall process corresponds to a one-electron reduction of the dye mediated by the deprotonated triplet state.


Subject(s)
Amines/chemistry , Phenazines/chemistry , Coloring Agents/chemistry , Electrons , Oxidation-Reduction , Protons , Solvents
15.
Photochem Photobiol Sci ; 6(6): 669-74, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17549269

ABSTRACT

Characterization of the excited states of the mycosporine-like amino acid palythine (lambda(max) = 320 nm) in aqueous solutions was achieved experimentally. The low value for the photodegradation quantum yield, (1.2 +/- 0.2) x 10(-5), confirms that palythine is highly photostable in air saturated-aqueous solutions. Laser flash photolysis of acetone in the presence of palythine allowed for the observation of a transient spectrum which is consistent with the triplet-triplet absorption of palythine. Kinetic treatment of the transient signals yields a lifetime of the triplet state of ca. 9 micros and a triplet energy around 330 kJ mol(-1). The photoacoustic calorimetry results are consistent with non-radiative decay as the major fate of excited palythine. A comparison of the photodegradation quantum yields and photophysical properties of palythine with those previously determined for the other mycosporine-like amino acids, shinorine and porphyra-334, suggests that geometrical isomerization around the C=N bond may contribute to the rapid deactivation of this group of molecules.


Subject(s)
Amino Acids/chemistry , Amino Acids/radiation effects , Cyclohexanols/chemistry , Cyclohexanols/radiation effects , Glycine/analogs & derivatives , Photolysis , Calorimetry , Cyclohexanols/isolation & purification , Cyclohexanones/chemistry , Cyclohexanones/radiation effects , Glycine/chemistry , Glycine/isolation & purification , Glycine/radiation effects , Isomerism , Kinetics , Quantum Theory , Rhodophyta/chemistry , Solutions , Spirulina/chemistry , Spirulina/radiation effects , Water/chemistry
16.
J Photochem Photobiol B ; 85(2): 102-8, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16831556

ABSTRACT

The quenching of anthracene fluorescence by indole (IN), 1,2-dimethylindole (DMI), tryptophan (Trp) and indole 3-acetic acid (IAA) in dimiristoylphophatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers was investigated. The studies were carried out at 25 degrees C in POPC vesicles and below (15 degrees C) and above (35 degrees C) the phase transition temperature (24 degrees C) of DMPC. A very efficient quenching of the anthracene fluorescence by IN and DMI in the lipid membrane is observed in all cases. It is less efficient in the case of Trp and IAA. Stern-Volmer plots are linear for DMI but present a downward curvature for the other quenchers. This was interpreted as an indication of the presence of an inaccessible fraction of anthracene molecules. By a modified Stern-Volmer analysis the fraction accessible to the quenchers and the quenching constant were determined. Partition constants of the quenchers were obtained from the changes in the fluorescence emission of the indole moiety caused by the presence of the phospholipid. Using the partition constants bimolecular quenching rate constants were determined in terms of the local concentration of quencher in the lipid bilayer. These corrected rate constants are lower than those in homogeneous solvents. In the case of DMPC values the gel phase are higher than in the liquid-crystalline phase. In the quenching by IN and DMI a new, red shifted, emission band appears which could be assigned to an exciplex emission. The exciplex band is absent in the quenching by IAA and Trp.


Subject(s)
Anthracenes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Indoles/chemistry , Phosphatidylcholines/chemistry , Temperature , Unilamellar Liposomes/chemistry , Photochemistry , Spectrometry, Fluorescence
17.
Photochem Photobiol ; 82(1): 213-8, 2006.
Article in English | MEDLINE | ID: mdl-16097860

ABSTRACT

The photochemistry of Ru(bpy)(3)+2 in the presence of amines was investigated in water by laser flash photolysis. N,N'-Dimethylaniline and p-phenylenediamine quench the luminescent metal to ligand charge transfer (MLCT) excited state of the complex by an electron transfer reaction that produces the semireduced form Ru(bpy)3+ in relatively high yields. On the other hand, triethylamine (TEA) and aniline do not quench the MLCT. Nevertheless, when laser flash irradiation at 532 nm is carried out in the presence of these amines, the formation of Ru(bpy)3+ is clearly detected by its transient absorption at 510 nm. These results are interpreted by an electron transfer reaction with the participation of a nonemitting excited state of the complex, formed independently of the MLCT from the Franck-Condon or the relaxed singlet excited state. The rate constants for the quenching of this state by TEA and aniline and the quantum yields for Ru(bpy)(3)+ were determined. The new state is formed in a very fast process and has a lifetime of ca 4 micros in water.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Amines/chemistry , Organometallic Compounds/chemistry , 2,2'-Dipyridyl/chemistry , Aniline Compounds/chemistry , Ethylamines/chemistry , Kinetics , Oxidation-Reduction , Solutions , Thermodynamics
18.
Photochem Photobiol Sci ; 3(10): 960-7, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15480487

ABSTRACT

In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements. In particular, photosensitization experiments on porphyra-334 support the participation of the triplet state in the photodecomposition mechanism yielding a more precise value of [capital Phi](T). As well, photoacoustic calorimetry experiments allowed the first direct quantification of the nonradiative relaxation pathways of the excited MAAs in solution, corroborating that the vast majority (ca. 97%) of the absorbed energy is promptly delivered to the surroundings as heat, consistently with the low photodecomposition and emission yields observed.


Subject(s)
Amino Acids/chemistry , Cyclohexanols/chemistry , Cyclohexanones/chemistry , Cyclohexylamines/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Water/chemistry , Amino Acids/radiation effects , Cyclohexanols/radiation effects , Cyclohexanones/radiation effects , Glycine/radiation effects , Molecular Structure , Photochemistry/methods , Spectrophotometry , Time Factors , Ultraviolet Rays
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(11): 2433-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15294225

ABSTRACT

Spectroscopic and photophysical properties of safranine O (Sf) were investigated in binary water/solvent mixtures. It was found that these properties are strongly solvent-dependent. A blue shift is observed for both the ground-state absorption and the triplet-triplet main absorption band when the solvent polarity augments. At the same time a red shift of the fluorescence emission band takes place. These facts are interpreted in terms of higher dipole moment of the dye molecule in the S(1) state as compared with the S(0) state, while a decrease in the dipole moment of the triplet state T(n) with respect to the triplet state T(1) occurs. The Stokes' shift and the fluorescence lifetime shows a linear correlation with the E(T)(30) parameter, while a non-linear behavior is observed when a correlation with models of a continuous dielectric solvent is attempted. These results suggest the operation of strong specific interactions of Sf with solvent molecules, most likely hydrogen bonding. From fluorescence lifetime and quantum yield determinations, as well as intersystem-crossing quantum yields, the solvent dependence of the photophysical kinetic parameters were obtained. The radiative fluorescence rate constant can be adequately reproduced by calculations based on the UV-Vis absorption and emission spectra, as given by the Strickler-Berg equation.


Subject(s)
Phenazines/chemistry , Photochemistry , Solvents/chemistry , Kinetics , Spectrometry, Fluorescence , Spectrophotometry , Thermodynamics
20.
Photochem Photobiol Sci ; 2(8): 893-7, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14521229

ABSTRACT

The quenching of the excited singlet of indole and its methyl derivatives by monosubstituted benzenes has been studied in three solvents of different polarities and bimolecular quenching rate constants have been determined. Below the diffusion limit the rate constants decrease when solvent polarity increases, with the exception of those for the quenching by benzonitrile. For the latter the rate constants are near the diffusion limit in all cases. The decrease may be understood in terms of a lower energy of the indole excited state in the more polar solvents. In cyclohexane the remnant emission in the presence of high concentration of the quencher is clearly red shifted, indicating the presence of a new emitting species that can be ascribed to the presence of an exciplex. In some cases the emission of the exciplex can be clearly separated from the molecular fluorescence. In the quenching by chlorobenzene in ethyl acetate and acetonitrile a new highly fluorescent product is formed. This photoreaction is observed with all the indole derivatives and the kinetics of the reaction was followed by the increase in fluorescence intensity at a wavelength were the reactants do not emit. Three major products were identified as phenyl substituted indoles by GC-MS and their fluorescence emission and excitation spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...