Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 37(1): 127-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467025

ABSTRACT

We developed a rules-based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co-occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re-evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting.


Subject(s)
Computational Biology/methods , Genetic Predisposition to Disease , Genetic Variation , Genomics/methods , Software , Humans , Observer Variation , Reproducibility of Results , Web Browser
2.
J Med Entomol ; 51(2): 450-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24724296

ABSTRACT

The study examines the extent and frequency of a knockdown-type resistance allele (kdr type) in North American populations of human head lice. Lice were collected from 32 locations in Canada and the United States. DNA was extracted from individual lice and used to determine their zygosity using the serial invasive signal amplification technique to detect the kdr-type T917I (TI) mutation, which is most responsible for nerve insensitivity that results in the kdr phenotype and permethrin resistance. Previously sampled sites were resampled to determine if the frequency of the TI mutation was changing. The TI frequency was also reevaluated using a quantitative sequencing method on pooled DNA samples from selected sites to validate this population genotyping method. Genotyping substantiated that TI occurs at high levels in North American lice (88.4%). Overall, the TI frequency in U.S. lice was 84.4% from 1999 to 2009, increased to 99.6% from 2007 to 2009, and was 97.1% in Canadian lice in 2008. Genotyping results using the serial invasive signal amplification reaction (99.54%) and quantitative sequencing (99.45%) techniques were highly correlated. Thus, the frequencies of TI in North American head louse populations were found to be uniformly high, which may be due to the high selection pressure from the intensive and widespread use of the pyrethrins- or pyrethroid-based pediculicides over many years, and is likely a main cause of increased pediculosis and failure of pyrethrins- or permethrin-based products in Canada and the United States. Alternative approaches to treatment of head lice infestations are critically needed.


Subject(s)
Insecticides , Pediculus/genetics , Permethrin , Sodium Channels/genetics , Animals , Canada , Gene Frequency , Genotyping Techniques , Insecticide Resistance/genetics , Mutation , United States
3.
PLoS One ; 8(3): e58773, 2013.
Article in English | MEDLINE | ID: mdl-23554923

ABSTRACT

The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 10(5) colony-forming units [CFU]/ml) and vector (more than 10(8) CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector.


Subject(s)
Bartonella quintana/genetics , Temperature , Transcriptome , Animals , Arthropod Vectors/microbiology , Bartonella quintana/growth & development , Bartonella quintana/pathogenicity , Base Sequence , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Humans , Molecular Sequence Annotation , Nucleotide Motifs , Promoter Regions, Genetic , Transcription, Genetic , Virulence/genetics
4.
Pest Manag Sci ; 66(9): 1031-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20564731

ABSTRACT

BACKGROUND: Pediculosis is the most prevalent parasitic infestation of humans. Resistance to pyrethrin- and pyrethroid-based pediculicides is due to knockdown (kdr)-type point mutations in the voltage-sensitive sodium channel alpha-subunit gene. Early detection of resistance is crucial for the selection of effective management strategies. RESULTS: Kdr allele frequencies of lice from 14 countries were determined using the serial invasive signal amplification reaction. Lice collected from Uruguay, the United Kingdom and Australia had kdr allele frequencies of 100%, while lice from Ecuador, Papua New Guinea, South Korea and Thailand had kdr allele frequencies of 0%. The remaining seven countries investigated, including seven US populations, two Argentinian populations and populations from Brazil, Denmark, Czech Republic, Egypt and Israel, displayed variable kdr allele frequencies, ranging from 11 to 97%. CONCLUSION: The newly developed and validated SISAR method is suitable for accurate monitoring of kdr allele frequencies in head lice. Proactive management is needed where kdr-type resistance is not yet saturated. Based on sodium channel insensitivity and its occurrence in louse populations resistant to pyrethrin- and pyrethroid-based pediculicides, the T917I mutation appears to be a key marker for resistance. Results from the Egyptian population, however, indicate that phenotypic resistance of lice with single or double mutations (M815I and/or L920F) should also be determined.


Subject(s)
DNA Mutational Analysis/methods , Drug Resistance/genetics , Gene Frequency , Nucleic Acid Amplification Techniques/methods , Pediculus/genetics , Point Mutation , Animals , Base Sequence , Genome, Insect/genetics , Internationality , Molecular Sequence Data , Pediculus/drug effects , Polymerase Chain Reaction , Reproducibility of Results , Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...