Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 20(5): 1210-7, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24458908

ABSTRACT

A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.

2.
Nature ; 505(7483): 382-5, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24336207

ABSTRACT

Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.


Subject(s)
Adhesives/chemistry , Hydrogels/chemistry , Liver , Nanoparticles/chemistry , Animals , Cattle , Cellulose/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Shear Strength , Silicon Dioxide/chemistry , Solutions , Surface Properties , Water/chemistry
3.
J Am Chem Soc ; 134(49): 19961-4, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23171241

ABSTRACT

We show that supramolecular chemistry provides a convenient tool to prepare carbone nanotubes (CNTs) that can be dispersed in solvents of any chemical nature, easily recovered and redispersed. Thymine-modified CNTs (CNT-Thy) can be dispersed in solution in the presence of diaminotriazine (DAT) end-functionalized polymers, through supramolecular Thy/DAT association. DAT-polymer chains are selected according to the solvent chemical nature: polystyrene (PS) for hydrophobic/low polarity solvents and a propylene oxide/ethylene oxide copolymer (predominantly propylene oxide based, PPO/PEO) for polar solvents or water. Long-term stable supramolecular CNT dispersions are reversibly aggregated by adding a few droplets of a selective dissociating agent of the Thy/DAT association (DMSO). CNT-Thy, simply recycled by centrifugation or filtration, can be redispersed in another solvent in presence of a suitable soluble DAT-polymer. Dispersion and aggregation can also be switched on and off by choosing a polymer for which a given solvent is close to Θ-conditions, e.g., PS in cyclohexane or PPO/PEO in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...