Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(27): 7937-7947, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36255914

ABSTRACT

Spectral lines from the impurities held in stainless steel and in aluminum can be clearly identified in the UV and the visible spectra when emission is laser induced. These spectroscopic lines can be initiated in metal irradiated at moderate laser optical densities of about 2.5×108W/cm2. In addition to the lines arising from impurities found in some metals, it was found that some spectroscopic lines from iron oxide formed during irradiation were also detected at the above-mentioned power density. It was found that lines observed from iron oxide are consistent with what is reported in the literature. The investigations reported were produced on samples at optical densities that are sufficient to create an electric field that is about 10 times the air electrical breakdown near the focal point. The results reported were obtained without setting any delay between the laser Q-switch and the data acquisition. The spectroscopic data are comparable to those shown in the literature by laser-induced breakdown spectroscopy in term of signal-to-noise ratio and are promising in detecting impurities such as heavy metals in remote sensing applications, where pulse delay is not always practical due to atmospheric conditions and power requirements. As a marking procedure is used during the investigations, the method demonstrates how spectroscopic monitoring in real time can be applied during a procedure in laser micromachining applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121514, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35717928

ABSTRACT

In order to accurately account for the contribution of different plasmon mediated phenomena when developing materials for applications in photothermal therapy, photovoltaics, or photocatalysis reliable, precise, and localized temperature measurements are required. In this work we applied two surface-enhanced Raman scattering (SERS) spectroscopy based methods to measure the local temperature increase due to the thermoplasmonic effect in gold and silver nanoparticles on thin polystyrene films. The first method relies on the temperature dependence of the anti-Stokes to Stokes Raman bands intensity ratio for a label Rhodamine 6G deposited on the nanostructures. We found that the method enables good measurements in the 20-60 °C temperature range but becomes less reliable at higher temperatures when the system undergoes transformations and the plasmonic response of the nanoparticles changes with heating. The second method makes use of the temperature dependent adsorption geometry of phenyl isocyanide (PIC) and a corresponding shift of ν(C≡N) vibration. The method demonstrates greater temperature sensitivity of gold nanoparticles than silver. The difference in sensing capability is related to the difference in molecular adsorption geometry of PIC on Au compared to Ag. We conclude that for universal thermometry of the nanoparticle/ thin film composite a combination of the two methods provides more precise localized temperature measurements.


Subject(s)
Metal Nanoparticles , Nanostructures , Thermometry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Polymers , Silver/chemistry , Spectrum Analysis, Raman/methods
3.
ACS Appl Mater Interfaces ; 12(1): 1905-1912, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31818094

ABSTRACT

Plasmonic sensitization of semiconductors is an attractive approach to increase light-induced photocatalytic performance; one method is to use plasmonic nanostructures in core@shell geometry. The occurrence and mechanism of synergetic effects in photocatalysis of such geometries are under intense debate and proposed to occur either through light-induced charge transfer (CT) or through thermal effects. This study focuses on the relation between the dimensions of Ag@CeO2 nanocubes, the wavelength-dependent efficiency, and the mechanism of light-induced direct CT. A 4-mercaptobenzoic acid (4-MBA) linker between core and shell acts as a Raman probe for CT. For all Ag@CeO2 nanocubes, CT increases with decreasing excitation wavelength, with notable increase at and below 514 nm. This is fully explainable by CT from silver to the 4-MBA LUMO, with the increase for excitation wavelengths that exceed the Ag/4-MBA LUMO gap of 2.28 eV (543 nm). A second general trend observed is an increase in CT yield with ceria shell thickness, which is assigned to relaxation of the excited electron further into the ceria conduction band, potentially producing defects.

4.
J Phys Chem Lett ; 8(22): 5555-5558, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29090930

ABSTRACT

An unusually sharp localized surface plasmon resonance (sLSPR) is observed for a monolayer of glass-supported silver nanocubes coated with a thin, 5-20 nm, Al2O3 film. The resonance becomes significantly narrower and stronger while losing optical anisotropy and sensitivity to the surroundings with increasing overlayer thickness. Surface-enhanced Raman scattering excitation profiles indicate an additional enhancement to the electric field brought in by the sLSPR. The resonance is thought to originate from a Fano-like constructive interference between the quadrupolar and dipolar LSPR modes in supported silver nanocubes leading to enhanced light extinction. This phenomenon is of significance for plasmon-induced charge-transfer processes in photovoltaics and catalysis.

6.
Nanoscale ; 8(21): 11168-76, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27180659

ABSTRACT

Integration of nanoparticles into thin films is essential for the development of functional materials, studies of fundamental interfacial processes, and exploitation of inherent properties from the particles themselves. In this work, we systematically investigate the process of incorporation of silver nanocubes into thin polystyrene films at temperatures just above the polymer glass transition. The process of nanocrystal incorporation can be precisely monitored via far-field spectroscopy to observe the response of spatially resolved hybrid plasmon modes. Each plasmon resonance has a distinct dynamic range and maximum sensitivity forming a complementary set of nanorulers that operates over a distance comparable to the edge length of the cubes. The approach explored in this work is a general robust method for the development of long-range polychromatic nanorulers.

7.
Nanoscale ; 4(20): 6374-82, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22948712

ABSTRACT

Plasmonic properties, such as refractive index sensitivity (RIS), surface enhancement of the Raman signal (SERS), fluorescence quenching, and photocatalytic activity, of monolayers of weakly interacting monodisperse silver nanocubes were qualitatively modified in a very well controlled manner by supporting them on thin silicon films with varying thickness. Such fine tunability is made possible by the strong dependence of the nanocube dipolar (D) and quadrupolar (Q) plasmon mode hybridization on the refractive index of the supporting substrate. By increasing the Si film thickness from zero to ~25 nm we were able to "shift" the D resonance mode by up to 200 nm for ~80 nm cubes without significantly affecting the Q mode. The silicon supported nanocubes showed a significant improvement in RIS via the Q mode with a figure of merit greater than 6.5 and about an order of magnitude enhancement of the SERS signal due to the stronger electric field created by the D mode. Such substrates also showed a ~10 times decrease in rhodamine 6G fluorescence as well as the rates of amorphous carbon formation. The study proposes a new way to design and engineer plasmonic nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...