Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 3: 31, 2015.
Article in English | MEDLINE | ID: mdl-26052513

ABSTRACT

Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

2.
Nat Cell Biol ; 17(3): 288-99, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25720963

ABSTRACT

The view of the lysosome as the terminal end of cellular catabolic pathways has been challenged by recent studies showing a central role of this organelle in the control of cell function. Here we show that a lysosomal Ca2+ signalling mechanism controls the activities of the phosphatase calcineurin and of its substrate ​TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy. Lysosomal Ca2+ release through ​mucolipin 1 (​MCOLN1) activates calcineurin, which binds and dephosphorylates ​TFEB, thus promoting its nuclear translocation. Genetic and pharmacological inhibition of calcineurin suppressed ​TFEB activity during starvation and physical exercise, while calcineurin overexpression and constitutive activation had the opposite effect. Induction of autophagy and lysosomal biogenesis through ​TFEB required ​MCOLN1-mediated calcineurin activation. These data link lysosomal calcium signalling to both calcineurin regulation and autophagy induction and identify the lysosome as a hub for the signalling pathways that regulate cellular homeostasis.


Subject(s)
Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Calcineurin/genetics , Lysosomes/metabolism , Transient Receptor Potential Channels/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Calcineurin/metabolism , Calcium Signaling , Cell Line, Tumor , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Mice , Phosphorylation , Protein Transport , Transient Receptor Potential Channels/metabolism
3.
Epigenetics Chromatin ; 4: 16, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21892963

ABSTRACT

BACKGROUND: Polycomb group (PcG) genes code for chromatin multiprotein complexes that are responsible for maintaining gene silencing of transcriptional programs during differentiation and in adult tissues. Despite the large amount of information on PcG function during development and cell identity homeostasis, little is known regarding the dynamics of PcG complexes and their role during terminal differentiation. RESULTS: We show that two distinct polycomb repressive complex (PRC)2 complexes contribute to skeletal muscle cell differentiation: the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. Interestingly, the opposing dynamics of PRC2-Ezh2 and PRC2-Ezh1 at these muscle regulatory regions is differentially regulated at the chromatin level by Msk1 dependent methyl/phospho switch mechanism involving phosphorylation of serine 28 of the H3 histone (H3S28ph). While Msk1/H3S28ph is critical for the displacement of the PRC2-Ezh2 complex, this pathway does not influence the binding of PRC2-Ezh1 on the chromatin. Importantly, depletion of Ezh1 impairs muscle differentiation and the chromatin recruitment of MyoD to the MyoG promoter in differentiating myotubes. We propose that PRC2-Ezh1 is necessary for controlling the proper timing of MyoG transcriptional activation and thus, in contrast to PRC2-Ezh2, is required for myogenic differentiation. CONCLUSIONS: Our data reveal another important layer of epigenetic control orchestrating skeletal muscle cell terminal differentiation, and introduce a novel function of the PRC2-Ezh1 complex in promoter setting.

4.
FEBS Lett ; 585(13): 2067-77, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21575638

ABSTRACT

During development cell differentiation is accompanied by progressive restriction of the developmental potential and increased structural and functional specialization of cells. In this context, mechanisms of cell memory guarantee that cells maintain different identities previously determined by the integrated action of signalling and specific sets of transcription factors. Unraveling the molecular basis by which cells build and maintain their memory represents one of the most fascinating problems in biology. PcG proteins were originally identified as part of an epigenetic cellular memory system that controls gene silencing via chromatin structure. However, recent reports suggest that they are also involved in controlling dynamics and plasticity of gene regulation, particularly during differentiation, by interacting with other components of the transcriptional apparatus. In this review, we discuss the role of PcG proteins in pluripotent ES cells and in well known mammalian cell differentiation systems including skeletal muscle, epidermal, neuronal differentiation. The emerging picture suggests that indeed, plasticity and not rigidity is a fundamental aspect of PcG physiology and cell memory function.


Subject(s)
Cell Differentiation/physiology , Repressor Proteins/metabolism , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Epigenomics , Humans , Polycomb-Group Proteins , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...