Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1009198, 2022.
Article in English | MEDLINE | ID: mdl-36275704

ABSTRACT

Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon Type I , Mice , Animals , Thymus Gland , Clone Cells , Autoantigens
2.
Nat Immunol ; 23(11): 1644-1652, 2022 11.
Article in English | MEDLINE | ID: mdl-36271145

ABSTRACT

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.


Subject(s)
Arthritis, Psoriatic , Encephalomyelitis, Autoimmune, Experimental , Psoriasis , Humans , Mice , Animals , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Interleukin-17/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , MARVEL Domain-Containing Proteins/genetics
3.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33858960

ABSTRACT

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Subject(s)
Aging/genetics , Antigens/genetics , Immunologic Memory/genetics , T-Lymphocytes/immunology , Aging/immunology , Animals , Antigens/immunology , Clonal Evolution , Genomic Instability , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
4.
EMBO J ; 39(17): e104202, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32696476

ABSTRACT

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.


Subject(s)
Feedback, Physiological , Receptors, Interleukin-17/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin-17/genetics
5.
Immunol Lett ; 203: 57-61, 2018 11.
Article in English | MEDLINE | ID: mdl-30243945

ABSTRACT

It is well established that lymphopenia induces the formation of the memory-phenotype T cells without the exposure to foreign antigens. More recently, the memory-phenotype antigen-inexperienced memory T cells were described in lymphoreplete mice and called virtual memory T cells. In this review, we compare multiple aspects of the biology of lymphopenia-induced memory T cells and virtual memory T cells, including cytokine requirements, the role of T-cell receptor specificity in the differentiation process, gene expression signature, and the immune response. Based on this comparison, we conclude that lymphopenia-induced memory T cells and virtual memory T cells most likely represent a single T-cell subset, for which we propose a term 'homeostatic memory T cells'.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytokines/immunology , Immunologic Memory , Lymphopenia/immunology , Models, Immunological , Animals , CD8-Positive T-Lymphocytes/pathology , Humans , Lymphopenia/pathology
6.
EMBO J ; 37(14)2018 07 13.
Article in English | MEDLINE | ID: mdl-29752423

ABSTRACT

Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Immunologic Memory , Receptors, Antigen, T-Cell/analysis , Animals , Homeostasis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...