Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 25(1): 153, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566174

ABSTRACT

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , beta Catenin , Adult , Animals , Humans , beta Catenin/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Wnt Signaling Pathway , Bleomycin/toxicity
2.
Elife ; 112022 08 19.
Article in English | MEDLINE | ID: mdl-35983994

ABSTRACT

Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound ß-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells-the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Animals , Genes, ras , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methyltransferases/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/metabolism
3.
Clin Cancer Res ; 21(13): 2916-23, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25838394

ABSTRACT

Tumors consist of a heterogeneous mixture of functionally distinct cancer cells. These functional differences can be caused by varying levels of receptor activity, differentiation, and distinct metabolic and epigenetic states. Intratumoral heterogeneity can lead to interdependence among different subpopulations of cells for sustained tumor growth. In addition, subpopulations can vary widely in their responses to therapeutic agents. As such, it is believed that intratumoral heterogeneity may underlie incomplete treatment responses, acquired and innate resistance, and disease relapse observed in the clinic in response to conventional chemotherapy and targeted agents.


Subject(s)
Neoplasms/drug therapy , Animals , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology
4.
PLoS One ; 8(8): e74033, 2013.
Article in English | MEDLINE | ID: mdl-24009765

ABSTRACT

NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice) is prominent. We have recently demonstrated that in type 1 diabetes (T1D) NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype. In addition, we found that NKp46 recognizes an unknown ligand expressed by beta cells derived from humans and mice and that blocking of NKp46 activity prevented diabetes development. Here we investigated the properties of the unknown NKp46 ligand. We show that the NKp46 ligand is mainly located in insulin granules and that it is constitutively secreted. Following glucose stimulation the NKp46 ligand translocates to the cell membrane and its secretion decreases. We further demonstrate by using several modalities that the unknown NKp46 ligand is not insulin. Finally, we studied the expression of the NKp46 ligand in type 2 diabetes (T2D) using 3 different in vivo models and 2 species; mice and gerbils. We demonstrate that the expression of the NKp46 ligand is decreased in all models of T2D studied, suggesting that NKp46 is not involved in T2D.


Subject(s)
Antigens, Ly/metabolism , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression , Insulin-Secreting Cells/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Animals , Antigens, Ly/genetics , Autoimmunity/genetics , Diabetes Mellitus, Type 2/immunology , Gene Expression Regulation/drug effects , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/immunology , Leptin/administration & dosage , Ligands , Male , Mice , Natural Cytotoxicity Triggering Receptor 1/genetics , Protein Binding
5.
Cancer Cell ; 24(2): 242-56, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23890787

ABSTRACT

Senescence, perceived as a cancer barrier, is paradoxically associated with inflammation, which promotes tumorigenesis. Here, we characterize a distinct low-grade inflammatory process in stressed epithelium that is related to para-inflammation; this process either represses or promotes tumorigenesis, depending on p53 activity. Csnk1a1 (CKIα) downregulation induces a senescence-associated inflammatory response (SIR) with growth arrest in colorectal tumors, which loses its growth control capacity in the absence of p53 and instead, accelerates growth and invasiveness. Corresponding processes occur in CKIα-deleted intestinal organoids, assuming tumorigenic transformation properties ex vivo, upon p53 loss. Treatment of organoids and mice with anti-inflammatory agents suppresses the SIR and prevents p53-deficient organoid transformation and mouse carcinogenesis. SIR/para-inflammation suppression may therefore constitute a key mechanism in the anticarcinogenic effects of nonsteroidal anti-inflammatory drugs.


Subject(s)
Cell Transformation, Neoplastic/pathology , Inflammation/pathology , Neoplasms/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cellular Senescence/physiology , Inflammation/genetics , Mice , Mice, Knockout , Neoplasms/genetics
6.
Nature ; 488(7411): 409-13, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22801502

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Germ Cells/metabolism , Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Alleles , Animals , Biocatalysis , Cell Lineage , Chimera , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Fibroblasts , Gene Knockdown Techniques , Germ Cells/enzymology , HEK293 Cells , Histone Demethylases/deficiency , Histone Demethylases/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transgenes/genetics
7.
Mol Cell ; 46(5): 662-73, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22681888

ABSTRACT

Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Endopeptidases/physiology , Histones/metabolism , Ubiquitin-Protein Ligases/physiology , Animals , Chromatin Assembly and Disassembly , Down-Regulation , Embryonic Stem Cells/metabolism , Endopeptidases/metabolism , Epigenesis, Genetic , Humans , Mice , Models, Genetic , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases , Ubiquitination
9.
Nature ; 470(7334): 409-13, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21331045

ABSTRACT

The mature gut renews continuously and rapidly throughout adult life, often in a damage-inflicting micro-environment. The major driving force for self-renewal of the intestinal epithelium is the Wnt-mediated signalling pathway, and Wnt signalling is frequently hyperactivated in colorectal cancer. Here we show that casein kinase Iα (CKIα), a component of the ß-catenin-destruction complex, is a critical regulator of the Wnt signalling pathway. Inducing the ablation of Csnk1a1 (the gene encoding CKIα) in the gut triggers massive Wnt activation, surprisingly without causing tumorigenesis. CKIα-deficient epithelium shows many of the features of human colorectal tumours in addition to Wnt activation, in particular the induction of the DNA damage response and cellular senescence, both of which are thought to provide a barrier against malignant transformation. The epithelial DNA damage response in mice is accompanied by substantial activation of p53, suggesting that the p53 pathway may counteract the pro-tumorigenic effects of Wnt hyperactivation. Notably, the transition from benign adenomas to invasive colorectal cancer in humans is typically linked to p53 inactivation, underscoring the importance of p53 as a safeguard against malignant progression; however, the mechanism of p53-mediated tumour suppression is unknown. We show that the maintenance of intestinal homeostasis in CKIα-deficient gut requires p53-mediated growth control, because the combined ablation of Csnk1a1 and either p53 or its target gene p21 (also known as Waf1, Cip1, Sdi1 and Cdkn1a) triggered high-grade dysplasia with extensive proliferation. Unexpectedly, these ablations also induced non-proliferating cells to invade the villous lamina propria rapidly, producing invasive carcinomas throughout the small bowel. Furthermore, in p53-deficient gut, loss of heterozygosity of the gene encoding CKIα caused a highly invasive carcinoma, indicating that CKIα functions as a tumour suppressor when p53 is inactivated. We identified a set of genes (the p53-suppressed invasiveness signature, PSIS) that is activated by the loss of both p53 and CKIα and which probably accounts for the brisk induction of invasiveness. PSIS transcription and tumour invasion were suppressed by p21, independently of cell cycle control. Restraining tissue invasion through suppressing PSIS expression is thus a novel tumour-suppressor function of wild-type p53.


Subject(s)
Casein Kinase Ialpha/deficiency , Colorectal Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Adenoma/enzymology , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Casein Kinase Ialpha/genetics , Casein Kinase Ialpha/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Cellular Senescence , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Disease Progression , Female , Fibroblasts , Genes, APC , Genes, Tumor Suppressor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Loss of Heterozygosity , Male , Mice , Mice, Knockout , Neoplasm Invasiveness/pathology , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...