Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Ir J Med Sci ; 193(1): 257-263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37450259

ABSTRACT

BACKGROUND: The widespread use of intraoperative fluoroscopy in orthopaedic procedures has revolutionised surgical practice. However, there are risks associated with using ionising radiation. Efforts to reduce radiation exposure include low-dose imaging protocols and lead protective equipment. Current communication during fluoroscopic procedures can be inefficient and lead to excessive radiation exposure for patients and staff. AIMS: This study aims to implement a communication tool with standardised commands to reduce radiation exposure in an Irish orthopaedic department. METHODS: Radiation exposure was evaluated using dose-area product (DAP) measured in uGy/m2. A control group was recorded before implementing the communication tool. Training sessions were conducted and posters of the standardised commands were displayed. Feedback was collected from surgeons and radiographers via surveys. Statistical analysis was performed to compare pre- and post-intervention groups. RESULTS: A total of 673 surgical cases were included over 6 months. The post-intervention group showed a mean reduction in radiation exposure from 59.8 to 36.4 uGy/m2 (p < 0.011). Subset analyses revealed reduced radiation exposure for ORIF of the distal radius, ankle, humerus, and phalanges. Surgeons and radiographers recognised the need for improved communication and expressed willingness to learn the new tool. CONCLUSIONS: Implementation of a standardised communication tool effectively reduced patient and staff radiation exposure. It was also believed to have a positive effect on theatre staff morale. Incorporating a universal language tool into training programmes could be beneficial. Surgeons and radiographers provided several suggestions to improve the effectiveness and implementation of this tool into other units.


Subject(s)
Orthopedic Procedures , Radiation Exposure , Humans , Radiation Dosage , Orthopedic Procedures/methods , Communication , Fluoroscopy/methods
2.
Clin Transl Radiat Oncol ; 41: 100627, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441543

ABSTRACT

Purpose: Magnetic resonance-guided stereotactic body radiation therapy (MRgSBRT) with optional online adaptation has shown promise in delivering ablative doses to unresectable primary liver cancer. However, there remain limited data on the indications for online adaptation as well as dosimetric and longer-term clinical outcomes following MRgSBRT. Methods and Materials: Patients with unresectable hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and combined biphenotypic hepatocellular-cholangiocarcinoma (cHCC-CCA) who completed MRgSBRT to 50 Gy in 5 fractions between June of 2015 and December of 2021 were analyzed. The necessity of adaptive techniques was evaluated. The cumulative incidence of local progression was evaluated and survival and competing risk analyses were performed. Results: Ninety-nine analyzable patients completed MRgSBRT during the study period and 54 % had planning target volumes (PTVs) within 1 cm of the duodenum, small bowel, or stomach at the time of simulation. Online adaptive RT was used in 53 % of patients to correct organ-at-risk constraint violation and/or to improve target coverage. In patients who underwent adaptive RT planning, online replanning resulted in superior target coverage when compared to projected, non-adaptive plans (median coverage ≥ 95 % at 47.5 Gy: 91 % [IQR: 82-96] before adaptation vs 95 % [IQR: 87-99] after adaptation, p < 0.01). The median follow-up for surviving patients was 34.2 months for patients with HCC and 10.1 months for patients with CCA/cHCC-CCA. For all patients, the 2-year cumulative incidence of local progression was 9.8 % (95 % CI: 1.5-18 %) for patients with HCC and 9.0 % (95 % CI: 0.1-18) for patients with CCA/cHCC-CCA. Grade 3 through 5 acute and late clinical gastrointestinal toxicities were observed in < 10 % of the patients. Conclusions: MRgSBRT, with the option for online adaptive planning when merited, allows delivery of ablative doses to primary liver tumors with excellent local control with acceptable toxicities. Additional studies evaluating the efficacy and safety of MRgSBRT in the treatment of primary liver cancer are warranted.

3.
PLoS Pathog ; 18(9): e1010797, 2022 09.
Article in English | MEDLINE | ID: mdl-36095031

ABSTRACT

Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and RNA cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts that meet stringent criteria for expression. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORFs), six novel ORF-containing transcripts, and 15 transcripts encoding for messages that could alter protein functions through truncation or fusion of canonical ORFs. In addition, we detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking distinct gene transcription units. Among these chimeric proteins we detected an evolutionarily conserved protein containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies combined with mass spectrometry can reveal further complexity within viral transcriptomes and resulting proteomes.


Subject(s)
Adenoviridae , RNA, Viral , Adenoviridae/genetics , DNA, Complementary , Humans , Open Reading Frames/genetics , Proteome/metabolism , RNA Splicing/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/metabolism , Sequence Analysis, RNA/methods , Transcriptome
4.
Bioinformatics ; 38(11): 3113-3115, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35426900

ABSTRACT

MOTIVATION: The chemical modification of ribonucleotides regulates the structure, stability and interactions of RNAs. Profiling of these modifications using short-read (Illumina) sequencing techniques provides high sensitivity but low-to-medium resolution i.e. modifications cannot be assigned to specific transcript isoforms in regions of sequence overlap. An alternative strategy uses current fluctuations in nanopore-based long read direct RNA sequencing (DRS) to infer the location and identity of nucleotides that differ between two experimental conditions. While highly sensitive, these signal-level analyses require high-quality transcriptome annotations and thus are best suited to the study of model organisms. By contrast, the detection of RNA modifications in microbial organisms which typically have no or low-quality annotations requires an alternative strategy. Here, we demonstrate that signal fluctuations directly influence error rates during base-calling and thus provides an alternative approach for identifying modified nucleotides. RESULTS: DRUMMER (Detection of Ribonucleic acid Modifications Manifested in Error Rates) (i) utilizes a range of statistical tests and background noise correction to identify modified nucleotides with high confidence, (ii) operates with similar sensitivity to signal-level analysis approaches and (iii) correlates very well with orthogonal approaches. Using well-characterized DRS datasets supported by independent meRIP-Seq and miCLIP-Seq datasets we demonstrate that DRUMMER operates with high sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: DRUMMER is written in Python 3 and is available as open source in the GitHub repository: https://github.com/DepledgeLab/DRUMMER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Nanopore Sequencing , Software , Sequence Analysis, RNA/methods , High-Throughput Nucleotide Sequencing/methods , RNA/chemistry , Nucleotides
5.
Nucleic Acids Res ; 50(3): 1201-1220, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34671803

ABSTRACT

Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.


Subject(s)
Adenoviridae , RNA Splicing , RNA, Viral , Adenoviridae/genetics , Adenoviridae/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
6.
mSystems ; : e0046821, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34463575

ABSTRACT

Viral infections are associated with extensive remodeling of the cellular proteome. Viruses encode gene products that manipulate host proteins to redirect cellular processes or subvert antiviral immune responses. Adenovirus (AdV) encodes proteins from the early E4 region which are necessary for productive infection. Some cellular antiviral proteins are known to be targeted by AdV E4 gene products, resulting in their degradation or mislocalization. However, the full repertoire of host proteome changes induced by viral E4 proteins has not been defined. To identify cellular proteins and processes manipulated by viral products, we developed a global, unbiased proteomics approach to analyze changes to the host proteome during infection with adenovirus serotype 5 (Ad5) virus. We used whole-cell proteomics to measure total protein abundances in the proteome during Ad5 infection. Since host antiviral proteins can antagonize viral infection by associating with viral genomes and inhibiting essential viral processes, we used Isolation of Proteins on Nascent DNA (iPOND) proteomics to identify proteins associated with viral genomes during infection with wild-type Ad5 or an E4 mutant virus. By integrating these proteomics data sets, we identified cellular factors that are degraded in an E4-dependent manner or are associated with the viral genome in the absence of E4 proteins. We further show that some identified proteins exert inhibitory effects on Ad5 infection. Our systems-level analysis reveals cellular processes that are manipulated during Ad5 infection and points to host factors counteracted by early viral proteins as they remodel the host proteome to promote efficient infection. IMPORTANCE Viral infections induce myriad changes to the host cell proteome. As viruses harness cellular processes and counteract host defenses, they impact abundance, post-translational modifications, interactions, or localization of cellular proteins. Elucidating the dynamic changes to the cellular proteome during viral replication is integral to understanding how virus-host interactions influence the outcome of infection. Adenovirus encodes early gene products from the E4 genomic region that are known to alter host response pathways and promote replication, but the full extent of proteome modifications they mediate is not known. We used an integrated proteomics approach to quantitate protein abundance and protein associations with viral DNA during virus infection. Systems-level analysis identifies cellular proteins and processes impacted in an E4-dependent manner, suggesting ways that adenovirus counteracts potentially inhibitory host defenses. This study provides a global view of adenovirus-mediated proteome remodeling, which can serve as a model to investigate virus-host interactions of DNA viruses.

7.
Nat Microbiol ; 6(2): 234-245, 2021 02.
Article in English | MEDLINE | ID: mdl-33432153

ABSTRACT

Intrinsic antiviral host factors confer cellular defence by limiting virus replication and are often counteracted by viral countermeasures. We reasoned that host factors that inhibit viral gene expression could be identified by determining proteins bound to viral DNA (vDNA) in the absence of key viral antagonists. Herpes simplex virus 1 (HSV-1) expresses E3 ubiquitin-protein ligase ICP0 (ICP0), which functions as an E3 ubiquitin ligase required to promote infection. Cellular substrates of ICP0 have been discovered as host barriers to infection but the mechanisms for inhibition of viral gene expression are not fully understood. To identify restriction factors antagonized by ICP0, we compared proteomes associated with vDNA during HSV-1 infection with wild-type virus and a mutant lacking functional ICP0 (ΔICP0). We identified the cellular protein Schlafen family member 5 (SLFN5) as an ICP0 target that binds vDNA during HSV-1 ΔICP0 infection. We demonstrated that ICP0 mediates ubiquitination of SLFN5, which leads to its proteasomal degradation. In the absence of ICP0, SLFN5 binds vDNA to repress HSV-1 transcription by limiting accessibility of RNA polymerase II to viral promoters. These results highlight how comparative proteomics of proteins associated with viral genomes can identify host restriction factors and reveal that viral countermeasures can overcome SLFN antiviral activity.


Subject(s)
Cell Cycle Proteins/metabolism , Gene Expression Regulation, Viral , Herpes Simplex/virology , Host-Pathogen Interactions , Simplexvirus/genetics , Transcription, Genetic , Animals , Cell Cycle Proteins/genetics , Chlorocebus aethiops , DNA, Viral/metabolism , HEK293 Cells , HeLa Cells , Herpes Simplex/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Promoter Regions, Genetic , Proteomics , RNA Polymerase II/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells
8.
Nat Commun ; 11(1): 6016, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243990

ABSTRACT

Adenovirus is a nuclear replicating DNA virus reliant on host RNA processing machinery. Processing and metabolism of cellular RNAs can be regulated by METTL3, which catalyzes the addition of N6-methyladenosine (m6A) to mRNAs. While m6A-modified adenoviral RNAs have been previously detected, the location and function of this mark within the infectious cycle is unknown. Since the complex adenovirus transcriptome includes overlapping spliced units that would impede accurate m6A mapping using short-read sequencing, here we profile m6A within the adenovirus transcriptome using a combination of meRIP-seq and direct RNA long-read sequencing to yield both nucleotide and transcript-resolved m6A detection. Although both early and late viral transcripts contain m6A, depletion of m6A writer METTL3 specifically impacts viral late transcripts by reducing their splicing efficiency. These data showcase a new technique for m6A discovery within individual transcripts at nucleotide resolution, and highlight the role of m6A in regulating splicing of a viral pathogen.


Subject(s)
Adenosine/analogs & derivatives , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , RNA Splicing , RNA, Viral/metabolism , A549 Cells , Adenosine/metabolism , Adenoviruses, Human/pathogenicity , DNA, Viral/genetics , Gene Knockdown Techniques , Gene Knockout Techniques , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Small Interfering/metabolism , RNA, Viral/genetics , Sequence Analysis, RNA , Virus Replication
9.
ACS Comb Sci ; 22(11): 649-655, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32786319

ABSTRACT

DNA-encoded library (DEL) technology enables rapid, economical synthesis, and exploration of novel chemical space. Reaction development for DEL synthesis has recently accelerated in pace with a specific emphasis on ensuring that the reaction does not compromise the integrity of the encoding DNA. However, the factors that contribute to a reaction's "DNA compatibility" remain relatively unknown. We investigated several solid-phase reactions and encoding conditions and determined their impact on DNA compatibility. Conditions that minimized the accessibility of reactive groups on the DNA encoding tag (switching solvent, low temperature, double-stranded encoding tag) significantly improved compatibility. We showcased this approach in the multistep synthesis of an acyldepsipeptide (ADEP1) fragment, which preserved 73% of DNA for a >100-fold improvement over canonical conditions. These results are particularly encouraging in the context of multistep reaction sequences to access natural product-like scaffolds and more broadly underscore the importance of reconciling the biophysical properties and reactivity of DNA with chemistry development to yield high-quality libraries of those scaffolds.


Subject(s)
DNA/chemistry , Depsipeptides/chemical synthesis , Small Molecule Libraries/chemical synthesis , Base Sequence , Combinatorial Chemistry Techniques , DNA Damage , Esterification , Molecular Structure , Solid-Phase Synthesis Techniques/methods , Solvents/chemistry , Surface Properties , Temperature
10.
Nat Microbiol ; 5(10): 1217-1231, 2020 10.
Article in English | MEDLINE | ID: mdl-32661314

ABSTRACT

Viruses promote infection by hijacking the ubiquitin machinery of the host to counteract or redirect cellular processes. Adenovirus encodes two early proteins, E1B55K and E4orf6, that together co-opt a cellular ubiquitin ligase complex to overcome host defences and promote virus production. Adenovirus mutants lacking E1B55K or E4orf6 display defects in viral RNA processing and protein production, but previously identified substrates of the redirected ligase do not explain these phenotypes. Here, we used a quantitative proteomics approach to identify substrates of E1B55K/E4orf6-mediated ubiquitination that facilitate RNA processing. While all currently known cellular substrates of E1B55K and E4orf6 are degraded by the proteasome, we uncovered RNA-binding proteins as high-confidence substrates that are not decreased in overall abundance. We focused on two RNA-binding proteins, RALY and hnRNP-C, which we confirm are ubiquitinated without degradation. Knockdown of RALY and hnRNP-C increased levels of viral RNA splicing, protein abundance and progeny production during infection with E1B55K-deleted virus. Furthermore, infection with E1B55K-deleted virus resulted in an increased interaction of hnRNP-C with viral RNA and attenuation of viral RNA processing. These data suggest that viral-mediated ubiquitination of RALY and hnRNP-C relieves a restriction on viral RNA processing and reveal an unexpected role for non-degradative ubiquitination in the manipulation of cellular processes during virus infection.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/physiology , Gene Expression Regulation, Viral , Host-Pathogen Interactions , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Adenoviridae Infections/metabolism , Base Sequence , Binding Sites , Computational Biology/methods , Humans , Nucleotide Motifs , Protein Binding , Proteome , Proteomics/methods , RNA Processing, Post-Transcriptional , RNA Splicing , Ubiquitination
11.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266868

ABSTRACT

Deciphering the molecular pathogenesis of virally induced cancers is challenging due, in part, to the heterogeneity of both viral gene expression and host gene expression. Epstein-Barr virus (EBV) is a ubiquitous herpesvirus prevalent in B-cell lymphomas of immune-suppressed individuals. EBV infection of primary human B cells leads to their immortalization into lymphoblastoid cell lines (LCLs), serving as a model of these lymphomas. In previous studies, reports from our laboratory have described a temporal model for immortalization with an initial phase characterized by expression of Epstein-Barr nuclear antigens (EBNAs), high levels of c-Myc activity, and hyperproliferation in the absence of the latent membrane proteins (LMPs), called latency IIb. This is followed by the long-term outgrowth of LCLs expressing the EBNAs along with the LMPs, particularly NFκB-activating LMP1, defining latency III. However, LCLs express a broad distribution of LMP1 such that a subset of these cells express LMP1 at levels similar to those seen in latency IIb, making it difficult to distinguish these two latency states. In this study, we performed mRNA sequencing (mRNA-Seq) on early EBV-infected latency IIb cells and latency III LCLs sorted by NFκB activity. We found that latency IIb transcriptomes clustered independently from latency III independently of NFκB. We identified and validated mRNAs defining these latency states. Indeed, we were able to distinguish latency IIb cells from LCLs expressing low levels of LMP1 using multiplex RNA-fluorescence in situ hybridization (RNA-FISH) targeting EBV EBNA2 or LMP1 and human CCR7 or MGST1 This report defines latency IIb as a bona fide latency state independent from latency III and identifies biomarkers for understanding EBV-associated tumor heterogeneity.IMPORTANCE EBV is a ubiquitous pathogen, with >95% of adults harboring a life-long latent infection in memory B cells. In immunocompromised individuals, latent EBV infection can result in lymphoma. The established expression profile of these lymphomas is latency III, which includes expression of all latency genes. However, single-cell analysis of EBV latent gene expression in these lymphomas suggests heterogeneity where most cells express the transcription factor, EBNA2, and only a fraction of the cells express membrane protein LMP1. Our work describes an early phase after infection where the EBNAs are expressed without LMP1, called latency IIb. However, LMP1 levels within latency III vary widely, making these states hard to discriminate. This may have important implications for therapeutic responses. It is crucial to distinguish these states to understand the molecular pathogenesis of these lymphomas. Ultimately, better tools to understand the heterogeneity of these cancers will support more-efficacious therapies in the future.


Subject(s)
Biomarkers/analysis , Epstein-Barr Virus Infections/virology , Gene Expression Profiling , Herpesvirus 4, Human/growth & development , Host-Pathogen Interactions , Lymphocytes/virology , Virus Latency , Cells, Cultured , Humans , In Situ Hybridization, Fluorescence , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sequence Analysis, RNA
12.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29118124

ABSTRACT

Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription.IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival.


Subject(s)
B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Proto-Oncogene Proteins c-myc/metabolism , Viral Matrix Proteins/genetics , Cell Line , Histones , Humans , Promoter Regions, Genetic , Transcription, Genetic , Virus Latency
13.
Anal Chem ; 89(24): 13227-13234, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29124927

ABSTRACT

Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.


Subject(s)
High-Throughput Screening Assays , Microfluidic Analytical Techniques , Emulsions/chemistry , Gene Library , High-Throughput Screening Assays/instrumentation , Microfluidic Analytical Techniques/instrumentation , Particle Size
14.
Philos Trans R Soc Lond B Biol Sci ; 372(1732)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28893936

ABSTRACT

Viruses regulate cellular processes to facilitate viral replication. Manipulation of nuclear proteins and pathways by nuclear replicating viruses often causes cellular genome instability that contributes to transformation. The cellular DNA damage response (DDR) safeguards the host to maintain genome integrity, but DNA tumour viruses can manipulate the DDR to promote viral propagation. In this review, we describe the interactions of DNA tumour viruses with the phosphatidylinositol 3-kinase-like protein kinase (PIKK) pathways, which are central regulatory arms of the DDR. We review how signalling through the ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinases (DNA-PK) influences viral life cycles, and how their manipulation by viral proteins may contribute to tumour formation.This article is part of the themed issue 'Human oncogenic viruses'.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/physiology , Carcinogenesis/genetics , DNA Tumor Viruses/physiology , DNA-Activated Protein Kinase/physiology , Signal Transduction , Viral Proteins/metabolism , DNA Damage , DNA Repair , Humans , Protein Kinases
15.
Virology ; 512: 113-123, 2017 12.
Article in English | MEDLINE | ID: mdl-28950226

ABSTRACT

The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (∆123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3'UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ∆123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ∆123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis.


Subject(s)
Gene Expression Regulation, Viral/physiology , Herpesvirus 4, Human/metabolism , MicroRNAs/metabolism , Cell Line , Herpesvirus 4, Human/genetics , Humans , MicroRNAs/genetics , RNA, Viral
16.
Elife ; 62017 04 20.
Article in English | MEDLINE | ID: mdl-28425914

ABSTRACT

Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.


Subject(s)
Apoptosis , B-Lymphocytes/physiology , B-Lymphocytes/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Minor Histocompatibility Antigens/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cell Survival , Cells, Cultured , Humans , Mice
17.
ACS Comb Sci ; 19(3): 181-192, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28199790

ABSTRACT

DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-µm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.


Subject(s)
Combinatorial Chemistry Techniques/instrumentation , DNA/chemistry , Drug Evaluation, Preclinical/instrumentation , Lab-On-A-Chip Devices , Base Sequence , Cathepsin D/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Equipment Design , Gene Library , Humans , Microspheres , Pepstatins/chemistry , Pepstatins/pharmacology
18.
Anal Chem ; 88(5): 2904-11, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26815064

ABSTRACT

With the potential for each droplet to act as a unique reaction vessel, droplet microfluidics is a powerful tool for high-throughput discovery. Any attempt at compound screening miniaturization must address the significant scaling inefficiencies associated with library handling and distribution. Eschewing microplate-based compound collections for one-bead-one-compound (OBOC) combinatorial libraries, we have developed hνSABR (Light-Induced and -Graduated High-Throughput Screening After Bead Release), a microfluidic architecture that integrates a suspension hopper for compound library bead introduction, droplet generation, microfabricated waveguides to deliver UV light to the droplet flow for photochemical compound dosing, incubation, and laser-induced fluorescence for assay readout. Avobenzone-doped PDMS (0.6% w/w) patterning confines UV exposure to the desired illumination region, generating intradroplet compound concentrations (>10 µM) that are reproducible between devices. Beads displaying photochemically cleavable pepstatin A were distributed into droplets and exposed with five different UV intensities to demonstrate dose-response screening in an HIV-1 protease activity assay. This microfluidic architecture introduces a new analytical approach for OBOC library screening, and represents a key component of a next-generation distributed small molecule discovery platform.


Subject(s)
Photochemistry , Dose-Response Relationship, Radiation
19.
SELECTION OF CITATIONS
SEARCH DETAIL
...