Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 21(1): 5, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200564

ABSTRACT

BACKGROUND: Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS: We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS: We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION: Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.


Subject(s)
HIV Infections , Substance-Related Disorders , Humans , Blood-Brain Barrier , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Endothelial Cells , Neoplasm Proteins , Membrane Transport Proteins , Central Nervous System , Tenofovir , HIV Infections/drug therapy , Pregnanes
2.
bioRxiv ; 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37546800

ABSTRACT

Background: Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. Methods: We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. Results: We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. Conclusion: Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.

3.
Macromol Biosci ; 20(10): e2000170, 2020 10.
Article in English | MEDLINE | ID: mdl-32734662

ABSTRACT

The application of rationally designed therapeutic peptides (TP) may improve outcomes in cancer treatment. These peptides hold the potential to directly target proliferative pathways and stimulate cell arrest or death pathways. Elastin-like polypeptide (ELP) is an elastin derived biopolymer that undergoes a thermally mediated phase transition. This study employs p50, a nuclear localization sequence derived peptide that inhibits the activation of NFκB and is implicated in cancer cell survival and metastasis. In order to effectively delivery p50, it is conjugated to SynB1-ELP1, a thermally responsive macromolecular carrier. By applying an external heat source, mild hyperthermic conditions (41 °C) induce aggregation and therefore can be used to specifically target ELP to solid tumors in cancer therapy. The addition of a cell penetrating peptide (CPP) to the N-terminus of the macromolecular carrier enhances the cellular uptake and directs the subcellular localization of the bioactive peptide. The novel TP, p50, inhibits proliferation and induces apoptosis of breast cancer cells by blocking the intranuclear import of NFκB. By expanding the repertoire of oncogenic targets, CPPs, and ELP carrier sizes, ELP-based polypeptides may be modulated to optimize the delivery of these novel therapies and allow for the flexibility to create individualized cancer therapies.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Peptides/pharmacology , Temperature , Amino Acid Sequence , Cell Proliferation/drug effects , Elastin/chemistry , Endocytosis/drug effects , Female , Humans , MCF-7 Cells , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Peptides/chemistry , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...