Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 550(1-2): 447-454, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30195080

ABSTRACT

Mirena® is long-acting (5 years) contraceptive intrauterine device. It is composed of a hollow cylindrical drug reservoir (containing Levonorgestrel and polydimethylsiloxane), which is covered with a release rate controlling silicone membrane. This structure presents a manufacturing challenge and to date, there have been no literature reports on the manufacturing, product design and quality evaluation of these hollow cylindrical intrauterine devices. It is vital to develop a reproducible and robust manufacturing process for these long-acting intrauterine devices or systems to obtain an understanding the in vitro and in vivo performance of such drug-device combinations. In this study, a twin-syringe method with a customized mold was developed to manufacture hollow cylindrical polydimethylsiloxane (PDMS)-based levonorgestrel intrauterine systems (LNG-IUSs). Different mold materials, curing temperatures and times were screened to fabricate PDMS-drug reservoirs with good quality characteristics (easy demolding, good appearance and appropriate physicochemical characteristics). The prepared PDMS-drug reservoirs were covered with the release rate controlling membrane to fabricate the LNG-IUSs. Physicochemical characterization (drug content and content uniformity, powder X-Ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) of the PDMS-drug reservoirs with different drug loadings (10%, 25% and 50% w/w) was conducted. Real-time in vitro drug release testing of LNG-IUSs with different drug loading was performed in normal saline (0.9% w/v NaCl) at 37 °C using a water bath shaker rotating at 100 rpm. The prepared PDMS-drug reservoirs demonstrated good and reproducible quality characteristics including appearance (smooth surfaces), targeted drug loading and good drug content uniformity in the PDMS matrix. The PXRD showed that the crystallinity of the API was maintained inside the PDMS matrix. DSC, TGA and FTIR confirmed the structure of the drug and the PDMS, indicating no interaction between the drug and the PDMS matrix in the prepared LNG-IUSs. Real-time in vitro drug release from the LNG-IUSs with different drug loadings showed zero-order release kinetics, and the drug release rate (based on daily release percentage) was inversely proportional to the drug loading.


Subject(s)
Contraceptive Agents, Female/chemistry , Drug Delivery Systems , Intrauterine Devices , Levonorgestrel/chemistry , Drug Liberation
2.
J Control Release ; 235: 176-181, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27261334

ABSTRACT

The foreign body response to implantable biosensors has been successfully countered through the use of corticosteroids, such as dexamethasone. However, while controlling inflammation, dexamethasone also decreases angiogenesis, which may lead to delayed analyte readings. The concurrent application of VEGF with dexamethasone increases angiogenesis, but VEGF has physical stability issues and is not cost-effective. The use of l-DOPA, a small molecule drug shown to up-regulate VEGF in the Parkinsonian brain, can potentially resolve these issues by substituting for VEGF. In this work, l-DOPA was used for the first time as a pro-angiogenic agent to counteract dexamethasone-induced ischemia. Angiogenesis was modeled using the CAM assay and changes in blood vessel formation were recorded with both manual and digital techniques. As expected, dexamethasone reduced blood vessel formation in the CAM. Application of l-DOPA, on the other hand, increased blood vessel formation when dexamethasone and l-DOPA were administered simultaneously. This novel finding suggests the utility of l-DOPA in the field of implantable medical devices, such as biosensors, as well as tissue engineering applications where both a vascularized tissue environment and control of tissue response is desired.


Subject(s)
Anti-Inflammatory Agents/adverse effects , Dexamethasone/adverse effects , Ischemia/chemically induced , Ischemia/prevention & control , Levodopa/pharmacology , Neovascularization, Physiologic/drug effects , Animals , Chick Embryo , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...