Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 16(2): e2000261, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32875683

ABSTRACT

In manufacturing monoclonal antibodies (mAbs), it is crucial to be able to predict how process conditions and supplements affect productivity and quality attributes, especially glycosylation. Supplemental inputs, such as amino acids and trace metals in the media, are reported to affect cell metabolism and glycosylation; quantifying their effects is essential for effective process development. We aim to present and validate, through a commercially relevant cell culture process, a technique for modeling such effects efficiently. While existing models can predict mAb production or glycosylation dynamics under specific process configurations, adapting them to new processes remains challenging, because it involves modifying the model structure and often requires some mechanistic understanding. Here, a modular modeling technique for adapting an existing model for a fed-batch Chinese hamster ovary (CHO) cell culture process without structural modifications or mechanistic insight is presented. Instead, data is used, obtained from designed experimental perturbations in media supplementation, to train and validate a supplemental input effect model, which is used to "patch" the existing model. The combined model can be used for model-based process development to improve productivity and to meet product quality targets more efficiently. The methodology and analysis are generally applicable to other CHO cell lines and cell types.


Subject(s)
Antibodies, Monoclonal/metabolism , Amino Acids/metabolism , Animals , CHO Cells , Copper , Cricetinae , Cricetulus , Glycosylation
2.
Proc Natl Acad Sci U S A ; 113(45): 12691-12696, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791059

ABSTRACT

Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3-ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an "NADH Sink" was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.

3.
Curr Opin Chem Eng ; 13: 109-118, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30370212

ABSTRACT

The use of protein nanoparticles for biosensing, biocatalysis and drug delivery has exploded in the last few years. The ability of protein nanoparticles to self-assemble into predictable, monodisperse structures is of tremendous value. The unique properties of protein nanoparticles such as high stability, and biocompatibility, along with the potential to modify them led to development of novel bioengineering tools. Together, the ability to control the interior loading and external functionalities of protein nanoparticles makes them intriguing nanodevices. This review will focus on a number of recent examples of protein nanoparticles that have been engineered towards imparting the particles with biocatalytic or biosensing functionality.

4.
Arch Biochem Biophys ; 526(2): 99-106, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22450168

ABSTRACT

Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Peptide Library , Protein Engineering/methods , Yeasts/genetics , Animals , Antibodies, Monoclonal/isolation & purification , Antibody Affinity , Humans , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...