Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38067972

ABSTRACT

Inertial measurement units (IMUs) have been validated for measuring sagittal plane lower-limb kinematics during moderate-speed running, but their accuracy at maximal speeds remains less understood. This study aimed to assess IMU measurement accuracy during high-speed running and maximal effort sprinting on a curved non-motorized treadmill using discrete (Bland-Altman analysis) and continuous (root mean square error [RMSE], normalised RMSE, Pearson correlation, and statistical parametric mapping analysis [SPM]) metrics. The hip, knee, and ankle flexions and the pelvic orientation (tilt, obliquity, and rotation) were captured concurrently from both IMU and optical motion capture systems, as 20 participants ran steadily at 70%, 80%, 90%, and 100% of their maximal effort sprinting speed (5.36 ± 0.55, 6.02 ± 0.60, 6.66 ± 0.71, and 7.09 ± 0.73 m/s, respectively). Bland-Altman analysis indicated a systematic bias within ±1° for the peak pelvic tilt, rotation, and lower-limb kinematics and -3.3° to -4.1° for the pelvic obliquity. The SPM analysis demonstrated a good agreement in the hip and knee flexion angles for most phases of the stride cycle, albeit with significant differences noted around the ipsilateral toe-off. The RMSE ranged from 4.3° (pelvic obliquity at 70% speed) to 7.8° (hip flexion at 100% speed). Correlation coefficients ranged from 0.44 (pelvic tilt at 90%) to 0.99 (hip and knee flexions at all speeds). Running speed minimally but significantly affected the RMSE for the hip and ankle flexions. The present IMU system is effective for measuring lower-limb kinematics during sprinting, but the pelvic orientation estimation was less accurate.


Subject(s)
Lower Extremity , Running , Humans , Biomechanical Phenomena , Knee Joint , Knee , Gait
3.
Sports Med ; 51(9): 1935-1945, 2021 09.
Article in English | MEDLINE | ID: mdl-33914283

ABSTRACT

BACKGROUND: Interventions utilising the Nordic hamstring exercise (NHE) have resulted in reductions in the incidence of hamstring strain injury (HSI). Subsequently, quantifying eccentric knee flexor strength during performance of the NHE to identify an association with the occurrence of future HSI has become increasingly common; however, the data to date are equivocal. OBJECTIVE: To systematically review the association between pre-season eccentric knee flexor strength quantified during performance of the NHE and the occurrence of future HSI. DESIGN: Systematic review and meta-analysis. DATA SOURCES: CINAHL, Cochrane Library, Medline Complete, Embase, Web of Science and SPORTDiscus databases were searched from January 2013 to January 10, 2020. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Prospective cohort studies which assessed the association between pre-season eccentric knee flexor strength quantified during performance of the NHE and the occurrence of future HSI. METHODS: Following database search, article retrieval and title and abstract screening, articles were assessed for eligibility against pre-defined criteria then assessed for risk of bias. Meta-analysis was used to pool data across studies, with meta-regression utilised where possible. RESULTS: A total of six articles were included in the meta-analysis, encompassing 1100 participants. Comparison of eccentric knee flexor strength during performance of the NHE in 156 injured participants and the 944 uninjured participants revealed no significant differences, regardless of whether strength was expressed as absolute (N), relative to body mass (N kg-1) or between-limb asymmetry (%). Meta-regression analysis revealed that the observed effect sizes were generally not moderated by age, mass, height, strength, or sport played. CONCLUSION: Eccentric knee flexor strength quantified during performance of the NHE during pre-season provides limited information about the occurrence of a future HSI.


Subject(s)
Hamstring Muscles , Leg Injuries , Humans , Muscle Strength , Prospective Studies , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...