Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082908

ABSTRACT

Cortical visual prostheses are designed to treat blindness by restoring visual perceptions through artificial electrical stimulation of the primary visual cortex (V1). Intracortical microelectrodes produce the smallest visual percepts and thus higher resolution vision - like a higher density of pixels on a monitor. However, intracortical microelectrodes must maintain a minimum spacing to preserve tissue integrity. One solution to increase the density of percepts is to implant and stimulate multiple visual areas, such as V1 and V2, although the properties of microstimulation in V2 remain largely unexplored. We provide a direct comparison of V1 and V2 microstimulation in two common marmoset monkeys. We find similarities in response trends between V1 and V2 but differences in threshold, neural activity duration, and spread of activity at the threshold current. This has implications for using multi-area stimulation to increase the resolution of cortical visual prostheses.


Subject(s)
Visual Cortex , Visual Prosthesis , Humans , Visual Cortex/physiology , Visual Perception/physiology , Blindness , Electric Stimulation
2.
J Neurophysiol ; 130(1): 189-198, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37377195

ABSTRACT

Ocular following is a short-latency, reflexive eye movement that tracks wide-field visual motion. It has been studied extensively in humans and macaques and is an appealing behavior for studying sensory-motor transformations in the brain because of its rapidity and rigidity. We explored ocular following in the marmoset, an emerging model in neuroscience because their lissencephalic brain allows direct access to most cortical areas for imaging and electrophysiological recordings. In three experiments, we tested ocular following responses in three adult marmosets. First, we varied the delay between saccade end and stimulus motion onset, from 10 to 300 ms. As in other species, tracking had shorter onset latencies and higher eye speeds with shorter postsaccadic delays. Second, using sine-wave grating stimuli, we explored the dependence of eye speed on spatiotemporal frequency. The highest eye speed was evoked at ∼16 Hz and ∼0.16 cycles per degree (cpd); however, the highest gain was elicited at ∼1.6 Hz and ∼1.2 cpd. The highest eye speed for each spatial frequency was observed at a different temporal frequency, but this interdependence was not consistent with complete speed tuning of the ocular following response. Finally, we found the highest eye speeds when saccade and stimulus motion directions were identical, although latencies were unaffected by direction difference. Our results showed qualitatively similar ocular following in marmosets, humans, and macaques, despite over an order of magnitude variation in body and eye size across species. This characterization will help future studies examining the neural basis of sensory-motor transformations.NEW & NOTEWORTHY Previous ocular following studies focused on humans and macaques. We examined the properties of ocular following responses in marmosets in three experiments, in which postsaccadic delay, spatial-temporal frequency of stimuli, and congruence of saccade and motion directions were manipulated. We have demonstrated short-latency ocular following in marmosets and discuss the similarities across three species that vary markedly in eye and head size. Our findings will help future studies examining the neural mechanism of sensory-motor transformations.


Subject(s)
Callithrix , Saccades , Humans , Animals , Adult , Vision, Ocular , Eye Movements , Macaca
3.
PLoS One ; 13(11): e0207179, 2018.
Article in English | MEDLINE | ID: mdl-30462681

ABSTRACT

Visual masking occurs when the perception of a brief target stimulus is affected by a preceding or succeeding mask. The uncoupling of the target and its perception allows an opportunity to investigate the neuronal mechanisms involved in sensory representation and visual perception. To determine whether rats are a suitable model for subsequent studies of the neuronal basis of visual masking, we first demonstrated that decoding of neuronal responses recorded in the primary visual cortex (V1) of anaesthetized rats predicted that orientation discrimination performance should decline when masking stimuli are presented immediately before or after oriented target stimuli. We then trained Long-Evans rats (n = 7) to discriminate between horizontal and vertical target Gabors or gratings. In some trials, a plaid mask was presented at varying stimulus onset asynchronies (SOAs) relative to the target. Spatially, the masks were presented either overlapping or surrounding the target location. In the absence of a mask, all animals could reliably discriminate orientation when stimulus durations were 16 ms or longer. In the presence of a mask, discrimination performance was impaired, but did not systematically vary with SOA as is typical of visual masking. In humans performing a similar task, we found visual masking impaired perception of the target at short SOAs regardless of the spatial or temporal configuration of stimuli. Our findings indicate that visual masking may be difficult to observe in rats as the stimulus parameters necessary to quantify masking will make the task so difficult that it prevents robust measurement of psychophysical performance. Thus, our results suggest that rats may not be an ideal model to investigate the effects of visual masking on perception.


Subject(s)
Discrimination, Psychological/physiology , Orientation/physiology , Perceptual Masking/physiology , Animals , Humans , Male , Models, Animal , Neurons/physiology , Photic Stimulation , Psychophysics , Rats , Rats, Long-Evans , Species Specificity , Task Performance and Analysis , Visual Cortex/physiology , Visual Perception/physiology
4.
Front Psychol ; 6: 303, 2015.
Article in English | MEDLINE | ID: mdl-25852617

ABSTRACT

Psychophysical and physiological studies of vision have traditionally used cathode ray tube (CRT) monitors to present stimuli. These monitors are no longer easily available, and liquid crystal display (LCD) technology is continually improving; therefore, we characterized a number of LCD monitors to determine if newer models are suitable replacements for CRTs in the laboratory. We compared the spatial and temporal characteristics of a CRT with five LCDs, including monitors designed with vision science in mind (ViewPixx and Display++), "prosumer" gaming monitors, and a consumer-grade LCD. All monitors had sufficient contrast, luminance range and reliability to support basic vision experiments with static images. However, the luminance of all LCDs depended strongly on viewing angle, which in combination with the poor spatial uniformity of all monitors except the VPixx, caused up to 80% drops in effective luminance in the periphery during central fixation. Further, all monitors showed significant spatial dependence, as the luminance of one area was modulated by the luminance of other areas. These spatial imperfections are most pronounced for experiments that use large or peripheral visual stimuli. In the temporal domain, the gaming LCDs were unable to generate reliable luminance patterns; one was unable to reach the requested luminance within a single frame whereas in the other the luminance of one frame affected the luminance of the next frame. The VPixx and Display++ were less affected by these problems, and had good temporal properties provided stimuli were presented for 2 or more frames. Of the consumer-grade and gaming displays tested, and if problems with spatial uniformity are taken into account, the Eizo FG2421 is the most suitable alternative to CRTs. The specialized ViewPixx performed best among all the tested LCDs, followed closely by the Display++; both are good replacements for a CRT, provided their spatial imperfections are considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...