Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Anim Nutr ; 6(1): 24-30, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211525

ABSTRACT

The utility of a next generation biosynthetic bacterial 6-phytase (PhyG) in restoring bone ash, bone phosphorus (P) content and performance in piglets depleted in P was evaluated. A total of 9 treatments were tested as follows. Treatment 1, a negative control (NC) diet; treatments 2, 3, 4, NC supplemented with 250, 500 or 1,000 FTU/kg of PhyG; treatments 5, 6, NC supplemented with 500 or 1,000 FTU/kg of a commercial Buttiauxella sp phytase (PhyB); treatments 7, 8, 9, NC supplemented with monocalcium phosphate (MCP) to provide 0.7, 1.4 and 1.8 g/kg digestible P, equating to a digestible P content of 1.8, 2.5 and 2.9 g/kg. The latter constituting the positive control (PC) diet with adequate P and calcium (Ca). The NC was formulated without inorganic P (1.1 g digestible P/kg) and reduced in Ca (5.0 g/kg). Additional limestone was added to treatments 7 to 9 to maintain Ca-to-P ratio between 1.2 and 1.3. A total of 162 crossed Pietrain × (Large White × Landrace) 21-d-old piglets (50% males and 50% females) were fed adaptation diets until 42 d old and then assigned to pens with 2 pigs/pen and 9 pens/treatment in a completely randomized block design. Piglets were fed mash diets based on corn and soybean meal ad libitum for 28 d. At the end of the study, one piglet perpen was euthanized and the right feet collected for determination of bone strength, bone ash and mineral content. Compared with the PC, the NC group had reduced average daily gain (ADG) and increased feed conversion ratio (FCR) during all growth phases and overall, and at d 28 (70 d old) NC pigs had bones with reduced ash, Ca and P content (P < 0.05). The PhyG at 250 FTU/kg improved bone ash vs. NC. Increasing PhyG dose linearly or quadratically improved bone ash, ADG and FCR (P < 0.05). At ≥ 500 FTU/kg, both PhyG and PhyB maintained ADG and FCR equivalent to PC. Linear regression analysis was done to compare the measured response parameters to increasing digestible P from MCP. Based on this analysis it was shown that PhyG and PhyB at 1,000 FTU/kg could replace 1.83 and 1.66 g/kg digestible P from MCP in the diet, respectively, on average across metacarpi bone ash, ADG or FCR. These findings suggest that the biosynthetic phytase is highly effective in the tested dietary setting.

3.
Biotechnol J ; 6(2): 224-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21298807

ABSTRACT

The carbohydrate oxidase from Microdochium nivale (CAOX), heterologously expressed in Aspergillus oryzae, and cellobiose dehydrogenase from Myriococcum thermophilum (MtCDH), were assessed for their ability to generate bleaching species at a pH suitable for liquid detergents. The substrate specificities of CAOX and MtCDH were analyzed on a large variety of soluble and insoluble substrates, using oxygen as an electron receptor. Even insoluble substrates like cellulose were oxidized from both CAOX and MtCDH, but only MtCDH produced H2O2 on cotton as the sole substrate. To enhance the amount of cello-oligosaccharides formed from cotton as substrates for CAOX and MtCDH, various cellulases were used in combination with MtCDH or CAOX, leading to a 10-fold increase in H2O2. As model substrates for colored stains, the degradation of pure anthocyanins and stain removal of blueberry stains by CAOX and MtCDH was examined in the absence and presence of a horseradish peroxidase. Both enzymes were able to produce an amount of H2O2 sufficient to decolorize the pure anthocyanins within 2 h and showed significant cleaning benefits on the stains.


Subject(s)
Basidiomycota/enzymology , Carbohydrate Dehydrogenases/metabolism , Hydrogen Peroxide/metabolism , Oxidoreductases/metabolism , Aspergillus oryzae/metabolism , Detergents/chemistry , Horseradish Peroxidase/metabolism , Industrial Microbiology/methods , Substrate Specificity
4.
Appl Microbiol Biotechnol ; 85(3): 563-71, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19662398

ABSTRACT

Conventional vat dyeing involves chemical reduction of dyes into their water-soluble leuco form generating considerable amounts of toxic chemicals in effluents. In the present study, a new beta-nicotinamide adenine dinucleotide disodium salt (NADH)-dependent reductase isolated from Bacillus subtilis was used to reduce the redox dyes CI Acid Blue 74, CI Natural Orange 6, and CI Vat Blue 1 into their water-soluble leuco form. Enzymatic reduction was optimized in relation to pH and temperature conditions. The reductase was able to reduce Acid Blue 74 and Natural Orange 6 in the presence of the stoichiometrically consumed cofactor NADH; meanwhile, Vat Blue 1 required the presence of mediator 1,8-dihydroxyanthraquinone. Oxygen from air was used to reoxidize the dyes into their initial forms. The enzymatic reduction of the dyes was studied and the kinetic constants determined, and these were compared to the chemically-reduced leuco form. The enzyme responsible for the reduction showed homology to a NADH-dependent reductase from B. subtilis based on results from the MS/MS peptide mass mapping of the tryptically digested protein. Additionally, the reduction of Acid Blue 74 to its leuco form by reductase from B. subtilis was confirmed using NADH regenerated by the oxidation of formic acid with formate dehydrogenase from Candida boidinii in the same solution.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Coloring Agents/metabolism , NAD/metabolism , Oxidoreductases/metabolism , Candida/enzymology , Formate Dehydrogenases/isolation & purification , Formate Dehydrogenases/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxidoreductases/isolation & purification , Temperature
5.
J Agric Food Chem ; 57(3): 1006-12, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19191672

ABSTRACT

Attractive color is one of the most important sensory characteristics of fruit and berry products, and elderberry juice is widely used as natural colorant. When pectinase preparations were used in the production of elderberry juice for clarification, a concomitant decrease of anthocyanins and thus a color loss were observed. This paper demonstrates that this is due to side glycosidase activities contained in commercial pectinase preparations from Aspergillus sp. Using LC-MS, sequential deglycosylation of cyanidin-3-sambubioside, cy-3-glucoside, cy-3-sambubioside-5-glucoside, and cy-3,5-diglucoside was found to be catalyzed by specific glycosidases contained in the pectinase preparations. There was no big difference in the deglycosylation rate between monoglucosidic or diglucosidic anthocyanins. However, the degradation rate was decreased when rutinose was attached to cyanidin, whereas the structure of the aglycone itself had almost no influence. Pure beta-glucosidases from Agrobacterium species and Aspergillus niger and the beta-glucosidase N188 from A. niger did not show any conversion of anthocyanins, indicating the presence of specific glycosidases. Thus, an activity gel based assay was developed to detect anthocyanin-specific glycosidase activity in enzyme preparations, and according to LC-MS peptide mass mapping of digested bands, homologies to a beta-glucosidase from Aspergillus kawachii were found.


Subject(s)
Anthocyanins/metabolism , Aspergillus/enzymology , Glycoside Hydrolases/metabolism , Polygalacturonase/metabolism , Sambucus/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Kinetics , Mass Spectrometry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...