Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Med Virol ; 96(1): e29379, 2024 01.
Article in English | MEDLINE | ID: mdl-38235617

ABSTRACT

Although neonates are commonly exposed to vaginal herpes simplex virus (HSV)-2, neonatal herpes is rare. Therefore, we analyzed paired infant and maternal HSV-2 isolates from two cases of mother-to-infant transmission to identify viral factors contributing to vertical transmission. Sixteen infant isolates with neonatal herpes and 27 genital isolates in their third trimester were included. The infant isolates were significantly more temperature-independent than the maternal isolates. Sequence comparison revealed viral UL13 protein kinase (UL13-PK) mutation in the infant isolates in both cases. In the expanded cohort, infant isolates (5/18) had significantly more UL13-PK mutations than genital isolates (1/29). Isolates within 8 days post-birth (3/4) had a significantly higher frequency of UL13-PK mutation than those after 9 days (2/14), suggesting a close association between UL13-PK mutations and vertical transmission. Elongation factor 1-delta was identified as a target of UL13-PK by proteomic analysis of UL13-PK-positive and -negative HepG2 cells. The mixed infant isolates with the intact and mutated UL13-PK conferred altered cell tropism, temperature independence adapting to fetal temperature, and better growth properties in Vero and hepatoblastoma HepG2 cells than in HSV-2 with intact and mutated UL13-PK alone, indicating that viral UL13-PK mutation is essential for vertical HSV-2 transmission.


Subject(s)
Herpes Simplex , Pregnancy Complications, Infectious , Pregnancy , Female , Infant, Newborn , Humans , Herpesvirus 2, Human/genetics , Mothers , Proteomics , Protein Kinases/genetics , Protein Kinases/metabolism , Viral Proteins/genetics , Mutation , Tropism , Infectious Disease Transmission, Vertical
2.
Antiviral Res ; 209: 105474, 2023 01.
Article in English | MEDLINE | ID: mdl-36511318

ABSTRACT

Human cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes latent asymptomatic infections in healthy individuals but can cause serious infections in immunocompromised people, resulting in increased risk of morbidity and mortality. The current FDA-approved CMV drugs target late stages of the CMV life-cycle. While these drugs are effective in most cases, they have serious drawbacks, including poor oral bioavailability, dose-limiting toxicity, and a low barrier to resistance. Given the clinical relevance of CMV-associated diseases, novel therapies are needed. Thus, a novel class of compounds that inhibits the early stages of the CMV life-cycle was identified and found to block infection of different strains in physiologically relevant cell types. This class of compounds, N-arylpyrimidinamine (NAPA), demonstrated potent anti-CMV activity against ganciclovir-sensitive and -resistant strains in in vitro replication assays, a selectivity index >30, and favorable in vitro ADME properties. Mechanism of action studies demonstrated that NAPA compounds inhibit an early step of virus infection. NAPA compounds are specific inhibitors of cytomegaloviruses and exhibited limited anti-viral activity against other herpesviruses. Collectively, we have identified a novel class of CMV inhibitor that effectively limits viral infection and proliferation.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/etiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ganciclovir/pharmacology , Immunocompromised Host
3.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36484496

ABSTRACT

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Subject(s)
Cytomegalovirus Infections , Organophosphonates , Prodrugs , Mice , Humans , Animals , Antiviral Agents/pharmacokinetics , Biological Availability , Prodrugs/pharmacology , Cytosine , Cidofovir
4.
RSC Med Chem ; 12(5): 804-808, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34124679

ABSTRACT

The substantial impact of acyclic nucleoside phosphonates (ANPs) on human medicine encourages the synthesis of new ANP analogues with a potentially differentiated antiviral spectrum. Herein, we demonstrate the functionalization of the 2-position of the (R,S)-3-hydroxy-2-(phosphonomethoxy)propyl side-chain of an inactive ANP with a polar cyano group to generate a thymine analogue with selective inhibition of hepatitis B virus (HBV) replication (SI > 302; EC50 = 0.33 µM), without significant antiretroviral activity. These findings suggest new strategies to synthesize unique ANPs with a targeted antiviral profile.

5.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article in English | MEDLINE | ID: mdl-32816736

ABSTRACT

Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 µM and a 50% cytotoxic concentration (CC50) of 100 to 150 µM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Cytomegalovirus Infections , Adenovirus Infections, Human/drug therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Cytomegalovirus Infections/drug therapy , Humans , Virus Replication
6.
Chem Biodivers ; 16(10): e1900391, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31479201

ABSTRACT

A series of novel 2-oxoimidazolidine derivatives were synthesized and their antiviral activities against BK human polyomavirus type 1 (BKPyV) were evaluated in vitro. Bioassays showed that the synthesized compounds 1-{[(4E)-5-(dichloromethylidene)-2-oxoimidazolidin-4-ylidene]sulfamoyl}piperidine-4-carboxylic acid (5) and N-Cyclobutyl-N'-[(4E)-5-(dichloromethylidene)-2-oxoimidazolidin-4-ylidene]sulfuric diamide (4) exhibited moderate activities against BKPyV (EC50 =5.4 and 5.5 µm, respectively) that are comparable to the standard drug Cidofovir. Compound 5 exhibited the same cytotoxicity in HFF cells and selectivity index (SI50 ) as Cidofovir. The selectivity index of compound 4 is three times less than that of Cidofovir due to the higher toxicity of this compound. Hence, these compounds may be taken as lead compound for further development of novel ant-BKPyV agents.


Subject(s)
Antiviral Agents/pharmacology , BK Virus/drug effects , Cidofovir/pharmacology , Drug Design , Imidazolidines/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Cidofovir/chemistry , Dose-Response Relationship, Drug , Humans , Imidazolidines/chemical synthesis , Imidazolidines/chemistry , Microbial Sensitivity Tests , Structure-Activity Relationship , Virus Replication/drug effects
7.
mSphere ; 4(1)2019 02 27.
Article in English | MEDLINE | ID: mdl-30814317

ABSTRACT

More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.


Subject(s)
Genetic Variation , Herpes Simplex/virology , Herpesvirus 2, Human/genetics , Pregnancy Complications, Infectious/virology , Cell Line , Encephalitis, Viral/virology , Female , Genome, Viral , Genomics , Genotype , Gestational Age , Herpes Simplex/complications , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/isolation & purification , Herpesvirus 2, Human/pathogenicity , Humans , Infant, Newborn , Male , Phenotype , Pregnancy , Viral Proteins/genetics
8.
J Perinatol ; 39(5): 683-689, 2019 05.
Article in English | MEDLINE | ID: mdl-30723275

ABSTRACT

OBJECTIVE: To determine frequency of hospital-acquired viral respiratory infections (HA-VRI) and associated outcomes in a NICU. STUDY DESIGN: Prospective cohort study conducted from 4 October 2016 to 21 March 2017. Infants hospitalized from birth in the NICU had a weekly nasal swab collected for testing using a multiplex PCR assay capable of detecting 16 different respiratory viruses. RESULTS: Seventy-four infants enrolled, with 5 (6.8%) testing positive for a virus (incidence rate of 1.3/1000 patient days). VRI positive infants had a younger gestational age (median 27 w vs. 32 w, p = 0.048); were hospitalized longer (97 d vs 43 d, p = 0.013); required more antibiotics (8 d vs. 4 d, p = 0.037) and were more likely to be diagnosed with bronchopulmonary dysplasia (p = 0.008) compared to VRI negative infants. CONCLUSION: Respiratory viruses are a frequent cause of HAI in the NICU and are associated with negative outcomes.


Subject(s)
Cross Infection/virology , Intensive Care Units, Neonatal , Respiratory Tract Infections/virology , Virus Diseases/diagnosis , Alabama , Bronchopulmonary Dysplasia/diagnosis , Cross Infection/diagnosis , Female , Gestational Age , Hospitalization , Humans , Infant, Low Birth Weight , Infant, Newborn , Infant, Premature , Male , Polymerase Chain Reaction , Prospective Studies , Respiratory Tract Infections/diagnosis
9.
Org Biomol Chem ; 17(3): 585-597, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30574983

ABSTRACT

This paper describes an access to new nitrogen-containing heterocyclic triterpenoids by the reaction of 2,3-indolotriterpenoids with ozone and dimethyldioxirane. The oxidation of indolo-fused 28-oxo-allobetulin or methyl platanoate with ozone led to a mixture of a quinolone as the major product and a nine-membered 2,3-seco-2-oxolactam and three different types of spiroindoles as byproducts. The formation of quinolone and 2,3-seco-2-oxolactam derivatives could be explained by the standard 1,3-dipolar cycloaddition of ozone to the C2(3)-double bond of the triterpene core similar to the products observed in the ozonolysis of indoles in the Witkop-Winterfeldt oxidation (WWO). The formation of spiroindoles was unexpected and could be explained through the 1,2-cycloaddition of ozone to the C2(3)-double bond with consecutive intramolecular rearrangements of the 2,3-epoxy-intermediate. These spiroindoles seem to be novel structures observed in the WWO reaction. The formation of only two isomeric triterpene spiroindolinones was achieved by the oxidation of 2,3-indolo-28-oxo-allobetulin with dimethyldioxirane that could be explained by the rearrangement of the 2,3-epoxy-intermediate. 19ß,28-Epoxy-18α-olean-28-oxo-2-nor-2,3-4'(1H)-quinolone was the most active against HPV-11 with EC50 0.45 µM and SI50 322 in a primary assay and SI90 < 10 against HPV-16 in a secondary assay. The oxidative transformations of indolotriterpenoids have great potential for further modifications towards the preparation of new biologically active compounds.

10.
Antiviral Res ; 159: 104-112, 2018 11.
Article in English | MEDLINE | ID: mdl-30287226

ABSTRACT

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Orthopoxvirus/drug effects , Viral Plaque Assay/standards , Cells, Cultured , Cytomegalovirus/drug effects , Cytopathogenic Effect, Viral , DNA Virus Infections/drug therapy , Fibroblasts , Herpesvirus 2, Human/drug effects , Herpesvirus 3, Human/drug effects , Humans
11.
Antiviral Res ; 159: 122-129, 2018 11.
Article in English | MEDLINE | ID: mdl-30287227

ABSTRACT

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper, we describe the assessment of antiviral activity of a set of nucleoside analogs against BK polyomavirus, JC polyomavirus, Epstein-Barr virus, human herpesvirus 6B, and human herpesvirus 8 in an automated 384-well format and utilize qPCR assays to measure the accumulation of viral DNA. In an accompanying paper, we present a standardized approach to evaluating antivirals against additional herpesviruses, orthopoxviruses, and adenovirus. Together, they reveal new activities for reference compounds and help to define the spectrum of antiviral activity for a set of nucleoside analogs against a set of 12 DNA viruses that infect humans including representative human herpesviruses, orthopoxviruses, adenoviruses, and polyomaviruses. This analysis helps provide perspective on combinations of agents that would help provide broad coverage of significant pathogens in immunocompromised patients as well as against emerging infections.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/standards , Herpesviridae/drug effects , Nucleosides/pharmacology , Polyomavirus/drug effects , Automation, Laboratory , DNA, Viral/analysis , Drug Discovery/methods , Humans , Virus Replication/drug effects
12.
Xenotransplantation ; 25(4): e12427, 2018 07.
Article in English | MEDLINE | ID: mdl-30264882

ABSTRACT

BACKGROUND: Recent advances in xenotransplantation have produced organs from pigs that are well tolerated in primate models because of genetic changes engineered to delete major antigens from donor animals. To ensure the safety of human transplant recipients, it will be essential to understand both the spectrum of infectious agents in donor pigs and their potential to be transmitted to immunocompromised transplant recipients. Equally important will be the development of new highly sensitive diagnostic methods for use in the detection of these agents in donor animals and for the monitoring of transplant recipients. METHODS: Herein, we report the development of a panel of 30 quantitative polymerase chain reaction (qPCR) assays for infectious agents with the potential to be transmitted to the human host. The reproducibility, sensitivity and specificity of each assay were evaluated and were found to exhibit analytic sensitivity that was similar to that of quantitative assays used to perform viral load testing of human viruses in clinical laboratories. RESULTS: This analytical approach was used to detect nucleic acids of infectious agents present in specimens from 9 sows and 22 piglets derived by caesarean section. The most commonly detected targets in adult animals were Mycoplasma species and two distinct herpesviruses, porcine lymphotrophic herpesvirus 2 and 3. A total of 14 piglets were derived from three sows infected with either or both herpesviruses, yet none tested positive for the viruses indicating that vertical transmission of these viruses is inefficient. CONCLUSIONS: The data presented demonstrate that procedures in place are highly sensitive and can specifically detect nucleic acids from target organisms in the panel, thus ensuring the safety of organs for transplantation as well as the monitoring of patients potentially receiving them.


Subject(s)
Herpesviridae/pathogenicity , Heterografts/virology , Swine Diseases/virology , Transplantation, Heterologous/adverse effects , Animals , Cytomegalovirus/genetics , Humans , Reproducibility of Results , Swine , Swine Diseases/diagnosis
13.
Antiviral Res ; 159: 153-174, 2018 11.
Article in English | MEDLINE | ID: mdl-30227153

ABSTRACT

The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.


Subject(s)
Cytomegalovirus Infections/drug therapy , Cytomegalovirus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Clinical Trials as Topic , Cytomegalovirus/physiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Mice
14.
Antiviral Res ; 153: 1-9, 2018 05.
Article in English | MEDLINE | ID: mdl-29510156

ABSTRACT

Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.


Subject(s)
Adenine/analogs & derivatives , Adenovirus Infections, Human/drug therapy , Adenoviruses, Human/drug effects , Antiviral Agents/administration & dosage , Organophosphonates/administration & dosage , Prodrugs/administration & dosage , Tyrosine/analogs & derivatives , Adenine/administration & dosage , Administration, Oral , Animals , Disease Models, Animal , Immunocompromised Host , Liver/pathology , Mesocricetus , Survival Analysis , Treatment Outcome , Tyrosine/administration & dosage
15.
Antiviral Res ; 149: 1-6, 2018 01.
Article in English | MEDLINE | ID: mdl-29113740

ABSTRACT

Pritelivir, a helicase-primase inhibitor, has excellent in vitro and in vivo activity against human herpes simplex virus (HSV). Mice lethally infected with HSV type 1 or 2, including acyclovir-resistant strains, were treated 72 h after infection for 7 days with pritelivir or acyclovir. Both drugs were administered orally twice daily either alone or in combination. Dosages of pritelivir from 0.3 to 30 mg/kg reduced mortality (P < 0.001) against HSV-1, E-377. With an acyclovir resistant HSV-1, 11360, pritelivir at 1 and 3 mg/kg increased survival (P < 0.005). With HSV-2, MS infected mice, all dosages higher than the 0.3 mg/kg dose of pritelivir were effective (P < 0.005). For acyclovir resistant HSV-2, strain 12247, pritelivir dosages of 1-3 mg/kg significantly improved survival (P < 0.0001). Combination therapies of pritelivir at 0.1 or 0.3 mg/kg/dose with acyclovir (10 mg/kg/dose) were protective (P < 0.0001) when compared to the vehicle treated group against HSV-2, strain MS (in line with previous data using HSV-1). An increased mean days to death (P < 0.05) was also observed and was indicative of a potential synergy. Pharmacokinetic studies were performed to determine pritelivir concentrations and a dose dependent relationship was found in both plasma and brain samples regardless of infection status or time of initiation of dosing. In summary, pritelivir was shown to be active when treatment was delayed to 72 h post viral inoculation and appeared to synergistically inhibit mortality in this model in combination with acyclovir. We conclude pritelivir has potent and resistance-breaking antiviral efficacy with potential for the treatment of potentially life-threatening HSV type 1 and 2 infections, including herpes simplex encephalitis.


Subject(s)
Acyclovir/pharmacology , Antiviral Agents/pharmacology , Encephalitis, Herpes Simplex/virology , Pyridines/pharmacology , Thiazoles/pharmacology , Acyclovir/administration & dosage , Acyclovir/pharmacokinetics , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Drug Therapy, Combination , Encephalitis, Herpes Simplex/drug therapy , Encephalitis, Herpes Simplex/mortality , Encephalitis, Herpes Simplex/pathology , Female , Humans , Mice , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Sulfonamides , Thiazoles/administration & dosage , Thiazoles/pharmacokinetics , Tissue Distribution , Treatment Outcome
16.
Antiviral Res ; 145: 1-5, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28676302

ABSTRACT

Cell culture antiviral experiments were conducted in order to understand the relationship between percentage data generated by plaque reduction (PR) and logarithmic data derived by virus yield reduction (VYR) assays, using three-dimensional MacSynergy II software. The relationship between percentage and logarithmic data has not been investigated previously. Interpretation of drug-drug interactions is based on a Volume of Synergy (VS) calculation, which can be positive (synergy), negative (antagonistic), or neutral (no or minimal interaction). Interactions of two known inhibitors of vaccinia virus replication, cidofovir and 6-azauridine, used in combination by PR assay yielded a VS value of 265, indicative of strong synergy. By VYR, the VS value was only 37, or weak synergy using the same criterion, even though profound log10 reductions in virus titer occurred at multiple drug combinations. These results confirm that the differences in VS values is dependent of the measurement scale, and not that the degree of synergy differed between the assays. We propose that for logarithmic data, the calculated VS values will be lower for significant synergy and antagonism and that volumes of >10 µM2log10 PFU/ml (or other units such as µM2log10 genomic equivalents/ml or µM2log10 copies/ml) and <-10 µM2log10 PFU/ml are likely to be indicative of strong synergy and strong antagonism, respectively. Data presented here show that the interaction of cidofovir and 6-azauridine was strongly synergistic in vitro.


Subject(s)
Antiviral Agents/pharmacology , Drug Synergism , Microbial Sensitivity Tests , Vaccinia virus/drug effects , Animals , Azauridine/pharmacology , Chlorocebus aethiops , Cidofovir , Cytosine/analogs & derivatives , Cytosine/pharmacology , Data Accuracy , Data Interpretation, Statistical , Drug Interactions , Humans , Organophosphonates/pharmacology , Software , Vaccinia virus/growth & development , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
17.
J Med Chem ; 59(23): 10470-10478, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933957

ABSTRACT

Human papillomavirus (HPV) high-risk genotypes such as HPV-16 and HPV-18 cause the majority of anogenital tract carcinomas, including cervical cancer, the second most common malignancy in women worldwide. Currently there are no approved antiviral agents that reduce or eliminate HPV and reverse virus-associated pathology. We synthesized and evaluated several alkoxyalkyl acyclic nucleoside phosphonate diesters and identified octadecyloxyethyl benzyl 9-[(2-phosphonomethoxy)ethyl]guanine (ODE-Bn-PMEG) as an active compound which strongly inhibited transient amplification of HPV-11, -16, and -18 origin-containing plasmid DNA in transfected cells at concentrations well below its cytotoxic concentrations. ODE-Bn-PMEG demonstrated increased uptake in human foreskin fibroblast cells and was readily converted in vitro to the active antiviral metabolite, PMEG diphosphate. The P-chiral enantiomers of ODE-Bn-PMEG were obtained and appeared to have equivalent antiviral activities against HPV. ODE-Bn-PMEG is a promising candidate for the local treatment of HPV-16 and HPV-18 and other high-risk types, an important unmet medical need.


Subject(s)
Antiviral Agents/pharmacology , DNA, Viral/drug effects , Guanine/analogs & derivatives , Nucleic Acid Amplification Techniques , Organophosphonates/pharmacology , Papillomaviridae/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Guanine/chemical synthesis , Guanine/chemistry , Guanine/pharmacology , HEK293 Cells , HIV/drug effects , Herpesvirus 2, Human/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Molecular Structure , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Papillomaviridae/genetics , Structure-Activity Relationship , Virus Replication/drug effects
18.
Bioorg Med Chem Lett ; 26(20): 5087-5091, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27624078

ABSTRACT

Human polyomaviruses are generally latent but can be reactivated in patients whose immune systems are suppressed. Unfortunately, current therapeutics for diseases associated with polyomaviruses are non-specific, have undefined mechanisms of action, or exacerbate the disease. We previously reported on a class of dihydropyrimidinones that specifically target a polyomavirus-encoded protein, T antigen, and/or inhibit a cellular chaperone, Hsp70, that is required for virus replication. To improve the antiviral activity of the existing class of compounds, we performed Biginelli and modified multi-component reactions to obtain new 3,4-dihydropyrimidin-2(1H)-ones and -thiones for biological evaluation. We also compared how substituents at the N-1 versus N-3 position in the pyrimidine affect activity. We discovered that AMT580-043, a N-3 alkylated dihydropyrimidin-2(1H)-thione, inhibits the replication of a disease-causing polyomavirus in cell culture more potently than an existing drug, cidofovir.


Subject(s)
Antiviral Agents/pharmacology , Polyomavirus/drug effects , Pyrimidinones/pharmacology , Animals , Antiviral Agents/chemistry , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , Pyrimidinones/chemistry , Structure-Activity Relationship
19.
J Infect Dis ; 214(1): 32-5, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26941282

ABSTRACT

Brincidofovir is an oral antiviral in development for prevention of cytomegalovirus disease. Cytomegalovirus genotyping results from a phase 2 trial comparing brincidofovir to placebo for prophylaxis against cytomegalovirus infection in hematopoietic cell transplant recipients provided initial data on the clinical resistance profile for brincidofovir. In this study, no known resistance-associated mutations were detected in brincidofovir-treated subjects; identified genotypic substitutions did not confer resistance to cytomegalovirus antivirals in vitro, suggesting that these changes represent polymorphisms unrelated to brincidofovir resistance. Lack of evidence for genotypic resistance during prophylaxis suggests that first-line use of brincidofovir for prevention of cytomegalovirus infection may preserve downstream options for patients.


Subject(s)
Antiviral Agents/therapeutic use , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/genetics , Cytosine/therapeutic use , Drug Resistance, Viral/genetics , Mutation/drug effects , Transplant Recipients , Cytomegalovirus/genetics , Cytomegalovirus Infections/physiopathology , DNA-Directed DNA Polymerase/genetics , Female , Genotype , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunocompromised Host , Male , United States
20.
Antiviral Res ; 119: 23-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25857706

ABSTRACT

Monohydroxymethyl methylenecyclopropane nucleosides (MCPNs) with ether or thioether substituents at the 6-position show promise as broad-spectrum herpes virus inhibitors. Their proposed mechanism of action involves sequential phosphorylation to a triphosphate, which can then inhibit viral DNA polymerase. The inhibition of herpes simplex virus (HSV) by these compounds is not dependent on the viral thymidine kinase (TK), which is known to phosphorylate acyclovir (ACV), a standard treatment for HSV infections. Previous studies on the mechanism of action of these compounds against human cytomegalovirus (HCMV) implicated a host kinase in addition to HCMV UL97 kinase in performing the initial phosphorylation. After first eliminating other candidate HSV-1 encoded kinases (UL13 and US3) as well as potential host nucleoside kinases, using activity-based fractionation, we have now identified the host serine-threonine protein kinase TAOK3 as the kinase responsible for transforming the representative monohydroxymethyl MCPN analog MBX 2168 to its monophosphate.


Subject(s)
Cyclopropanes/metabolism , Guanine/analogs & derivatives , Herpesvirus 1, Human/drug effects , Protein Serine-Threonine Kinases/metabolism , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Cyclopropanes/pharmacology , DNA, Viral/metabolism , Fibroblasts , Guanine/metabolism , Guanine/pharmacology , Herpesvirus 1, Human/genetics , Humans , Kinetics , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/isolation & purification , Vero Cells , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...