Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 4(10): 1334-1343, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30410971

ABSTRACT

Hydrolysis of nucleoside triphosphate (NTP) plays a key role for the function of many biomolecular systems. However, the chemistry of the catalytic reaction in terms of an atomic-level understanding of the structural, dynamic, and free energy changes associated with it often remains unknown. Here, we report the molecular mechanism of adenosine triphosphate (ATP) hydrolysis in the ATP-binding cassette (ABC) transporter BtuCD-F. Free energy profiles obtained from hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations show that the hydrolysis reaction proceeds in a stepwise manner. First, nucleophilic attack of an activated lytic water molecule at the ATP γ-phosphate yields ADP + HPO4 2- as intermediate product. A conserved glutamate that is located very close to the γ-phosphate transiently accepts a proton and thus acts as catalytic base. In the second step, the proton is transferred back from the catalytic base to the γ-phosphate, yielding ADP + H2PO4 -. These two chemical reaction steps are followed by rearrangements of the hydrogen bond network and the coordination of the Mg2+ ion. The rate constant estimated from the computed free energy barriers is in very good agreement with experiments. The overall free energy change of the reaction is close to zero, suggesting that phosphate bond cleavage itself does not provide a power stroke for conformational changes. Instead, ATP binding is essential for tight dimerization of the nucleotide-binding domains and the transition of the transmembrane domains from inward- to outward-facing, whereas ATP hydrolysis resets the conformational cycle. The mechanism is likely relevant for all ABC transporters and might have implications also for other NTPases, as many residues involved in nucleotide binding and hydrolysis are strictly conserved.

2.
Biophys J ; 110(11): 2407-2418, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27276259

ABSTRACT

Substrate translocation by ATP-binding cassette (ABC) transporters involves coupling of ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) to conformational changes in the transmembrane domains. We used molecular dynamics simulations to investigate the atomic-level mechanism of conformational coupling in the ABC transporter BtuCD-F, which imports vitamin B12 across the inner membrane of Escherichia coli. Our simulations show how an engineered disulfide bond across the NBD dimer interface reduces conformational fluctuations and hence configurational entropy. As a result, the disulfide bond is under substantial mechanical stress. Releasing this entropic spring, as is the case in the wild-type transporter, combined with analyzing the pairwise forces between individual residues, unravels the coupling mechanism. The identified pathways along which force is propagated from the NBDs via the coupling helix to the transmembrane domains are composed of highly conserved residues, underlining their functional relevance. This study not only reveals the details of conformational coupling in BtuCD-F, it also provides a promising approach to other long-range conformational couplings, e.g., in ABC exporters or other ATP-driven molecular machines.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Escherichia coli Proteins/metabolism , Periplasmic Binding Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphate/metabolism , Entropy , Escherichia coli , Escherichia coli Proteins/genetics , Lipid Bilayers , Molecular Dynamics Simulation , Mutation , Phosphatidylcholines/chemistry , Protein Multimerization , Protein Stability , Stress, Mechanical , Water/metabolism
3.
J Mol Biol ; 425(22): 4642-51, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23920359

ABSTRACT

The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.


Subject(s)
Antiporters/chemistry , Escherichia coli Proteins/chemistry , Amino Acid Sequence , Antiporters/genetics , Antiporters/metabolism , Crystallography, X-Ray , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Position-Specific Scoring Matrices , Protein Conformation , Protein Multimerization
4.
J Phys Chem B ; 117(13): 3516-30, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23406326

ABSTRACT

Hybrid molecular dynamics simulations of atomistic (AA) solutes embedded in coarse-grained (CG) environment can substantially reduce the computational cost with respect to fully atomistic simulations. However, interfacing both levels of resolution is a major challenge that includes a balanced description of the relevant interactions. This is especially the case for polar solvents such as water, which screen the electrostatic interactions and thus require explicit electrostatic coupling between AA and CG subsystems. Here, we present and critically test computationally efficient hybrid AA/CG models. We combined the Gromos atomistic force field with the MARTINI coarse-grained force field. To enact electrostatic coupling, two recently developed CG water models with explicit electrostatic interactions were used: the polarizable MARTINI water model and the BMW model. The hybrid model was found to be sensitive to the strength of the AA-CG electrostatic coupling, which was adjusted through the relative dielectric permittivity εr(AA-CG). Potentials of mean force (PMFs) between pairs of amino acid side chain analogues in water and partitioning free enthalpies of uncharged amino acid side chain analogues between apolar solvent and water show significant differences between the hybrid simulations and the fully AA or CG simulations, in particular for charged and polar molecules. For apolar molecules, the results obtained with the hybrid AA/CG models are in better agreement with the fully atomistic results. The structures of atomistic ubiquitin solvated in CG water and of a single atomistic transmembrane α-helix and the transmembrane portion of an atomistic mechanosensitive channel in CG lipid bilayers were largely maintained during 50-100 ns of AA/CG simulations, partly due to an overstabilization of intramolecular interactions. This work highlights some key challenges on the way toward hybrid AA/CG models that are both computationally efficient and sufficiently accurate for biomolecular simulations.


Subject(s)
Molecular Dynamics Simulation , Lipid Bilayers/chemistry , Peptides/chemistry , Proteins/chemistry , Static Electricity , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...