Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(21): 13714-13725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38741386

ABSTRACT

The activity, selectivity, and lifetime of nanocatalysts critically depend on parameters such as their morphology, support, chemical composition, and oxidation state. Thus, correlating these parameters with their final catalytic properties is essential. However, heterogeneity across nanoparticles (NPs) is generally expected. Moreover, their nature can also change during catalytic reactions. Therefore, investigating these catalysts in situ at the single-particle level provides insights into how these tunable parameters affect their efficiency. To unravel this question, we applied spectro-microscopy to investigate the thermal reduction of SiO2-supported copper oxide NPs in ultrahigh vacuum. Copper was selected since its oxidation state and morphological transformations strongly impact the product selectivity of many catalytic reactions. Here, the evolution of the NPs' chemical state was monitored in situ during annealing and correlated with their morphology in situ. A reaction front was observed during the reduction of CuO to Cu2O. From the temperature dependence of this front, the activation energy was extracted. Two parameters were found to strongly influence the NP reduction: the initial nanoparticle size and the chemical state of the SiO2. substrate. The CuOx reduction was found to be completed first on smaller NPs and was also favored over partially reduced SiOx regions that resulted from X-ray beam irradiation. This methodology with single-particle level spectro-microscopy resolution provides a way of isolating the influence of diverse morphologic, electronic, and chemical influences on a chemical reaction. The knowledge gained is crucial for the future design of more complex multimetallic catalytic systems.

2.
Nanoscale ; 15(31): 13062-13075, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37498343

ABSTRACT

Probing of the free surface ferroelectric properties of thin polar films can be achieved either by estimating the band bending variance under the top-most layer or by studying the extent of the extrinsic charge accumulated outside the surface. Photoemitted or incoming low-energy electrons can be used to characterize locally both properties in a spectromicroscopic approach. Thin ferroelectric lead zirco-titanate (PZT) is investigated by combining low energy/mirror electron microscopy (LEEM/MEM) with photoemission electron microscopy (PEEM) and high-resolution photoelectron spectroscopy (XPS). Significant extrinsic negative compensation charge is proven to accumulate on the surface of the outward polarized thin film, indicated by high MEM-LEEM transition values, up to 15.3 eV, and is correlated with the surface electrostatic potential, which can be partially screened either by electrons interacting with the sample or by soft X-rays through the ejection of secondary electrons and generation of positive charge under the surface. A radiation-induced surface charge compensation effect is observed. The study indicates that air-exposed high quality ferroelectric thin films show large negative surface potentials, determined locally on the surface, which are nevertheless sensitive to beam damage and molecular desorption. These values represent a confirmation of previously estimated surface potential energy values determined from the LEED data on clean surfaces.

3.
Ultramicroscopy ; 250: 113755, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37216832

ABSTRACT

We have used low-energy electron microscopy (LEEM), micro-illumination low-energy electron diffraction (µLEED) supported by ab initio calculations, and X-ray absorption spectroscopy (XAS) to investigate in-situ and in real-time the structural properties of Sm2O3 deposits grown on Ru(0001), a rare-earth metal oxide model catalyst. Our results show that samarium oxide grows in a hexagonal A-Sm2O3 phase on Ru(0001), exhibiting a (0001) oriented-top facet and (113) side facets. Upon annealing, a structural transition from the hexagonal to cubic phase occurs, in which the Sm cations exhibit the +3 oxidation state. The unexpected initial growth in the A-Sm2O3 hexagonal phase and its gradual transition to a mixture with cubic C-Sm2O3 showcases the complexity of the system and the critical role of the substrate in the stabilization of the hexagonal phase, which was previously reported only at high pressures and temperatures for bulk samaria. Besides, these results highlight the potential interactions that Sm could have with other catalytic compounds with respect to the here gathered insights on the preparation conditions and the specific compounds with which it interacts.

4.
ACS Catal ; 12(19): 11974-11983, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36249872

ABSTRACT

Spatio-temporal nonuniformities in H2 oxidation on individual Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10-6 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.

5.
ACS Appl Mater Interfaces ; 14(43): 48609-48618, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36255411

ABSTRACT

Ultrathin silica films are considered suitable two-dimensional model systems for the study of fundamental chemical and physical properties of all-silica zeolites and their derivatives, as well as novel supports for the stabilization of single atoms. In the present work, we report the creation of a new model catalytic support based on the surface functionalization of different silica bilayer (BL) polymorphs with well-defined atomic structures. The functionalization is carried out by means of in situ H-plasma treatments at room temperature. Low energy electron diffraction and microscopy data indicate that the atomic structure of the films remains unchanged upon treatment. Comparing the experimental results (photoemission and infrared absorption spectra) with density functional theory simulations shows that H2 is added via the heterolytic dissociation of an interlayer Si-O-Si siloxane bond and the subsequent formation of a hydroxyl and a hydride group in the top and bottom layers of the silica film, respectively. Functionalization of the silica films constitutes the first step into the development of a new type of model system of single-atom catalysts where metal atoms with different affinities for the functional groups can be anchored in the SiO2 matrix in well-established positions. In this way, synergistic and confinement effects between the active centers can be studied in a controlled manner.

6.
Chem Sci ; 12(42): 14241-14253, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34760210

ABSTRACT

Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate's orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments.

7.
ACS Appl Mater Interfaces ; 13(31): 37510-37516, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34328712

ABSTRACT

The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report µm scale, few-layer graphene structures formed at moderate temperatures (600-700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics.

8.
J Am Chem Soc ; 143(23): 8780-8790, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096299

ABSTRACT

We offer a comprehensive approach to determine how physical confinement can affect the water formation reaction. By using free-standing crystalline SiO2 bilayer supported on Ru(0001) as a model system, we studied the water formation reaction under confinement in situ and in real time. Low-energy electron microscopy reveals that the reaction proceeds via the formation of reaction fronts propagating across the Ru(0001) surface. The Arrhenius analyses of the front velocity yield apparent activation energies (Eaapp) of 0.32 eV for the confined and 0.59 eV for the nonconfined reaction. DFT simulations indicate that the rate-determining step remains unchanged upon confinement, therefore ruling out the widely accepted transition state effect. Additionally, H2O accumulation cannot explain the change in Eaapp for the confined cases studied because its concentration remains low. Instead, numerical simulations of the proposed kinetic model suggest that the H2 adsorption process plays a decisive role in reproducing the Arrhenius plots.

9.
Chemistry ; 27(6): 1870-1885, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33118653

ABSTRACT

The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.

10.
ACS Appl Mater Interfaces ; 12(22): 25444-25452, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32388975

ABSTRACT

Establishing the rather complex correlation between the structure and the charge transfer in organic-organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details. Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes. As for Buckminsterfullerene (C60), the growth of its fluorinated derivative C60F48 is influenced by the thickness and crystallinity of the PEN buffer layer, but the behavior is markedly different. We provide a microscopic description of the C60F48/PEN interface formation and analyze the consequences in the electronic properties of the final heterostructure. For just one single layer of PEN, a laterally complete but noncompact C60F48/PEN interface is created, importantly affecting the surface work function. Nonetheless, from the very beginning of the second layer formation, the presence of epitaxial and nonepitaxial PEN domains dramatically influences the growth dynamics and extremely well packed two-dimensional C60F48 islands develop. Insightful elemental maps of the C60F48/PEN surface spatially resolve the nonuniform distribution of the dopant molecules, which leads to a heterogeneous work function landscape.

11.
ACS Appl Mater Interfaces ; 12(20): 23595-23605, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32314585

ABSTRACT

Metal alloy catalysts can develop complex surface structures when exposed to reactive atmospheres. The structures of the resulting surfaces have intricate relationships with a myriad of factors, such as the affinity of the individual alloying elements to the components of the gas atmosphere and the bond strengths of the multitude of low-energy surface compounds that can be formed. Identifying the atomic structure of such surfaces is a prerequisite for establishing structure-property relationships, as well as for modeling such catalysts in ab initio calculations. Here, we show that an alloy, consisting of an oxophilic metal (Cu) diluted into a noble metal (Ag), forms a meta-stable two-dimensional oxide monolayer, when the alloy is subjected to oxidative reaction conditions. The presence of this oxide is correlated with selectivity in the corresponding test reaction of ethylene epoxidation. In the present study, using a combination of in situ, ex situ, and theoretical methods (NAP-XPS, XPEEM, LEED, and DFT), we determine the structure to be a two-dimensional analogue of Cu2O, resembling a single lattice plane of Cu2O. The overlayer holds a pseudo-epitaxial relationship with the underlying noble metal. Spectroscopic evidence shows that the oxide's electronic structure is qualitatively distinct from its three-dimensional counterpart, and because of weak electronic coupling with the underlying noble metal, it exhibits metallic properties. These findings provide precise details of this peculiar structure and valuable insights into how alloying can enhance catalytic properties.

12.
Angew Chem Int Ed Engl ; 59(26): 10587-10593, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32173977

ABSTRACT

The crystalline-to-vitreous phase transformation of a SiO2 bilayer supported on Ru(0001) was studied by time-dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone-Wales-type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate-determining step for the formation of a Stone-Wales-type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO2 bilayer and Ru(0001) support lowers the activation energy for breaking the Si-O bond compared to the unsupported film. Pre-exponential factors obtained in UHV and in O2 atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO2 bilayer plays a role on how the disordering propagates within the film.

13.
Angew Chem Int Ed Engl ; 57(28): 8749-8753, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29663598

ABSTRACT

Using low-energy electron microscopy and local photoelectron spectroscopy, water formation from adsorbed O and H2 on a Ru(0001) surface covered with a vitreous SiO2 bilayer (BL) was investigated and compared to the same reaction on bare Ru(0001). In both cases the reaction is characterized by moving reaction fronts. The reason for this might be related to the requirement of site release by O adatoms for further H2 -dissociative adsorption. Apparent activation energies (Eaapp ) are found for the front motion of 0.59 eV without cover and 0.27 eV under cover. We suggest that the smaller activation energy but higher reaction temperature for the reaction on the SiO2 BL covered Ru(0001) surface is due to a change of the rate-determining step. Other possible effects of the cover are discussed. Our results give the first values for Eaapp in confined space.

14.
Phys Chem Chem Phys ; 17(28): 18344-52, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26105596

ABSTRACT

The growth and self-assembling properties of nickel-tetraphenyl porphyrins (NiTPP) on the Cu(111) surface are analysed via scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). For low coverage, STM results show that NiTPP molecules diffuse on the terrace until they reach the step edge of the copper surface forming a 1D system with disordered orientation along the step edges. The nucleation process into a 2D superstructure was observed to occur via the interaction of molecules attached to the already nucleated 1D structure, reorienting molecules. For monolayer range coverage a 2D nearly squared self-assembled array with the emergence of chiral domains was observed. The XPS results of the Ni 2p(3/2) core levels exhibit a 2.6 eV chemical shift between the mono- and multilayer configuration of NiTPP. DFT calculations show that the observed chemical shifts of Ni 2p(3/2) occur due to the interaction of 3d orbitals of Ni with the Cu(111) substrate.

15.
Chemphyschem ; 15(17): 3864-70, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25186523

ABSTRACT

The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.

16.
Phys Chem Chem Phys ; 16(26): 13329-39, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24870371

ABSTRACT

Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.

17.
Phys Chem Chem Phys ; 15(31): 13184-9, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23824071

ABSTRACT

In this paper, the reconstruction of Pt films deposited on stepped Au(hkl) surfaces belonging to the [n(111) × (110)] family of planes has been studied. Pt films were deposited using the galvanic displacement procedure of a pre-deposited Cu monolayer. We experimentally found that the Pt film deposition onto Au(hkl) surfaces is not fully epitaxial suggesting an atomic arrangement different from the underlying substrate. Additionally, we found that even though voltammetric profiles are not much different from those reported in the literature for Pt single crystals having the same crystallographic orientation, there is a reconstruction of the Pt layers on all Pt/Au(hkl) surfaces upon CO adsorption/oxidation as indicated by comparing the active areas of the Pt films before and after stripping. Additional FTIR in situ experiments on ethanol oxidation confirm that film reconstruction affects the reaction by product yield modification.

18.
Phys Chem Chem Phys ; 14(2): 599-606, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22116267

ABSTRACT

The ethanol electro-oxidation reaction was evaluated using a polycrystalline Au substrate modified with two different amounts of Pt using the galvanic exchange methodology. FTIR results suggest that Pt deposits have a greater ability to break the C-C bond present in the ethanol molecule. However, under potentiostatic conditions both modified Au surfaces undergo faster deactivation in comparison with polycrystalline platinum as indicated by the chronoamperometric results. XPS results indicate the presence of two phases depending on the Pt content. These are: (i) Pt-Au alloy and (ii) segregated Pt. The structural and electronic properties of these phases were related to the differences observed in the catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...