Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(13): eadn9998, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536915

ABSTRACT

Cortical neurogenesis follows a simple lineage: apical radial glia cells (RGCs) generate basal progenitors, and these produce neurons. How this occurs in species with expanded germinal zones and a folded cortex, such as human, remains unclear. We used single-cell RNA sequencing from individual cortical germinal zones in ferret and barcoded lineage tracking to determine the molecular diversity of progenitor cells and their lineages. We identified multiple RGC classes that initiate parallel lineages, converging onto a common class of newborn neuron. Parallel RGC classes and transcriptomic trajectories were repeated across germinal zones and conserved in ferret and human, but not in mouse. Neurons followed parallel differentiation trajectories in the gyrus and sulcus, with different expressions of human cortical malformation genes. Progenitor cell lineage multiplicity is conserved in the folded mammalian cerebral cortex.


Subject(s)
Cerebral Cortex , Ferrets , Animals , Mice , Humans , Cell Lineage/physiology , Neurons/physiology , Cell Differentiation , Neurogenesis
2.
Sci Adv ; 8(2): eabj4010, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35020425

ABSTRACT

The evolutionary expansion and folding of the mammalian cerebral cortex resulted from amplification of progenitor cells during embryonic development. This process was reversed in the rodent lineage after splitting from primates, leading to smaller and smooth brains. Genetic mechanisms underlying this secondary loss in rodent evolution remain unknown. We show that microRNA miR-3607 is expressed embryonically in the large cortex of primates and ferret, distant from the primate-rodent lineage, but not in mouse. Experimental expression of miR-3607 in embryonic mouse cortex led to increased Wnt/ß-catenin signaling, amplification of radial glia cells (RGCs), and expansion of the ventricular zone (VZ), via blocking the ß-catenin inhibitor APC (adenomatous polyposis coli). Accordingly, loss of endogenous miR-3607 in ferret reduced RGC proliferation, while overexpression in human cerebral organoids promoted VZ expansion. Our results identify a gene selected for secondary loss during mammalian evolution to limit RGC amplification and, potentially, cortex size in rodents.

3.
Bioessays ; 43(7): e2100073, 2021 07.
Article in English | MEDLINE | ID: mdl-33998002

ABSTRACT

The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Neuroectodermal Tumors, Primitive , Brain , Embryonic Development/genetics , Humans , MicroRNAs/genetics
4.
EMBO J ; 39(21): e105479, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32985705

ABSTRACT

Structural integrity and cellular homeostasis of the embryonic stem cell niche are critical for normal tissue development. In the telencephalic neuroepithelium, this is controlled in part by cell adhesion molecules and regulators of progenitor cell lineage, but the specific orchestration of these processes remains unknown. Here, we studied the role of microRNAs in the embryonic telencephalon as key regulators of gene expression. By using the early recombiner Rx-Cre mouse, we identify novel and critical roles of miRNAs in early brain development, demonstrating they are essential to preserve the cellular homeostasis and structural integrity of the telencephalic neuroepithelium. We show that Rx-Cre;DicerF/F mouse embryos have a severe disruption of the telencephalic apical junction belt, followed by invagination of the ventricular surface and formation of hyperproliferative rosettes. Transcriptome analyses and functional experiments in vivo show that these defects result from upregulation of Irs2 upon loss of let-7 miRNAs in an apoptosis-independent manner. Our results reveal an unprecedented relevance of miRNAs in early forebrain development, with potential mechanistic implications in pediatric brain cancer.


Subject(s)
Homeostasis , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/metabolism , Repressor Proteins/metabolism , Telencephalon/embryology , Telencephalon/metabolism , Adherens Junctions , Animals , Apoptosis , Cell Proliferation , Humans , Insulin Receptor Substrate Proteins/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis , PAX6 Transcription Factor/metabolism , Repressor Proteins/genetics , Stem Cells/metabolism , Telencephalon/cytology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...