Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pathobiology ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934185

ABSTRACT

INTRODUCTION: Lysyl Oxidase-Like 2 (LOXL2) expression and function is frequently altered in different cancers, but scarcely explored in oral squamous cell carcinoma (OSCC). This prompted us to investigate the clinical relevance of LOXL2 expression pattern in OSCC and also a possible crosstalk with Hippo/YAP1 pathway signaling. METHODS: Immunohistochemical analysis of LOXL2 protein expression was performed in 158 OSCC patient samples, together with Yes-associated protein 1 (YAP1) activation status. Correlations with clinicopathological parameters and patient survival were assessed. RESULTS: Tumor cell-intrinsic LOXL2 expression showed two distinct expression patterns: diffuse cytoplasmic staining (64.6%), and heterogeneous perinuclear staining (35.4%). Remarkably, perinuclear LOXL2 staining was significantly associated with lymph node metastasis, advanced clinical stage and perineural invasion. Moreover, patients harboring tumors with perinuclear LOXL2 expression exhibited significantly poorer disease-specific survival (DSS) rates. Strikingly, we also found that perinuclear LOXL2 positivity gradually increased in relation to YAP1 activation, and patients harboring tumors with concomitant perinuclear LOXL2 and fully active YAP1 exhibited the worst DSS. Multivariate Cox analysis further revealed combined perinuclear LOXL2 and fully active YAP1 as a significant independent predictor of poor DSS. CONCLUSION: Tumor-intrinsic perinuclear LOXL2 emerges as a clinically and biologically relevant feature associated with advanced disease, tumor aggressiveness, and poor prognosis in OSCC. Moreover, this study unprecedentedly uncovers a functional relationship between perinuclear LOXL2 and YAP1 activation with major prognostic implications. Notably, combined perinuclear LOXL2 and fully active YAP1 was revealed as independent predictor of poor prognosis. These findings encourage targeting oncogenic LOXL2 functions for personalized treatment regimens.

2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673902

ABSTRACT

Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.


Subject(s)
Lectins, C-Type , Receptors, Cell Surface , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Adult , Female , Humans , Male , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Macrophages/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology
3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473941

ABSTRACT

The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.


Subject(s)
Laryngeal Neoplasms , Precancerous Conditions , Humans , Gene Amplification , Laryngeal Neoplasms/genetics , Precancerous Conditions/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Carcinogenesis/genetics , SOXB1 Transcription Factors/genetics
4.
Biomed Pharmacother ; 161: 114502, 2023 May.
Article in English | MEDLINE | ID: mdl-37002578

ABSTRACT

Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.


Subject(s)
Cancer-Associated Fibroblasts , Head and Neck Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Tumor Microenvironment , Head and Neck Neoplasms/pathology , Biomarkers/metabolism , Fibroblasts/metabolism
5.
Biomed Pharmacother ; 158: 114176, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916400

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC). METHODS: Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics. RESULTS: Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Carcinoma, Squamous Cell/pathology , Sorafenib/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Secretome , Cell Line, Tumor , Head and Neck Neoplasms/pathology , Fibroblasts/metabolism , Tumor Microenvironment/physiology
6.
Front Cell Dev Biol ; 10: 1009908, 2022.
Article in English | MEDLINE | ID: mdl-36247003

ABSTRACT

Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.

SELECTION OF CITATIONS
SEARCH DETAIL
...