Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 52 Suppl 4: 12-27, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29052330

ABSTRACT

Aquaporins (AQPs) play a vital role for the transport of water and solutes across cell membranes. Classification of these ubiquitous proteins into three categories (orthodox AQPs, aquaglyceroporins and superaquaporins) is based on their sequence similarity and substrate selectivity. In the male reproductive tract of mammals, most AQPs (except AQP6 and AQP12) are found in different organs (including testis, efferent ducts and epididymis). AQP1 and AQP9 are the most abundant AQPs in the efferent ducts and epididymis and play a crucial role for the secretion/reabsorption dynamics of luminal fluid during sperm transport and maturation. AQP3, AQP7, AQP8 and AQP11 are the most abundant AQPs in sperm and are involved in the regulation of their volume, which is required for the differentiation of spermatids into spermatozoa during spermatogenesis, as well as in sperm transit along environments of different osmolality (male and female reproductive tracts). While different studies conducted in oocytes and embryos have demonstrated that AQPs are important for cryotolerance, data in sperm are scarce. At present, mounting evidence indicates that AQP3, AQP7 and AQP11 are involved in the sperm response to variations of osmolality and to freeze-thawing procedures. All these studies contribute to understand the physiology of both male reproductive tract and sperm, and open up new research ventures on the improvement of sperm cryopreservation protocols.


Subject(s)
Aquaporins/metabolism , Cryobiology , Genitalia, Male/metabolism , Spermatozoa/metabolism , Animals , Male , Mammals , Osmolar Concentration
2.
Andrology ; 5(6): 1153-1164, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28941027

ABSTRACT

Cryopreservation is the most suitable method to preserve boar spermatozoa over long-term storage. However, freeze-thawing protocols inflict extensive damage to sperm cells, reducing their viability and compromising their fertilizing ability. In addition, high individual variability is known to exist between boar ejaculates, which may be classified as of good (GFE) or poor (PFE) freezability. While conventional spermiogram parameters fail to predict sperm cryotolerance in fresh spermatozoa, high levels of certain proteins, also known as freezability markers, have been found to be related to the sperm resilience to withstand freeze-thawing procedures. In this context, the hypothesis of this study was that aquaporins AQP3, AQP7, and AQP11 could be linked to boar sperm cryotolerance. Twenty-nine ejaculates were evaluated and subsequently classified as GFE or PFE based upon their sperm viability and motility at post-thawing. Fourteen ejaculates resulted to be GFE, whereas the other fifteen were found to be PFE. Relative abundances of AQP3, AQP7, and AQP11 and their localization patterns were evaluated in all fresh and frozen-thawed ejaculates through immunoblotting and immunocytochemistry. Prior to cryopreservation, relative amounts of AQP3 and AQP7 were found to be significantly (p < 0.05) higher in GFE than in PFE. In contrast, no significant differences (p > 0.05) between freezability groups were found for AQP11, despite GFE tending to present higher levels of this protein. The localization of AQP7, but not that of AQP3 or AQP11, was observed to be affected by cryopreservation procedures. In conclusion, these results suggest that AQP3 and AQP7 are related to boar sperm cryotolerance and may be used as freezability markers.


Subject(s)
Aquaporins/metabolism , Cryopreservation/methods , Semen Preservation/methods , Spermatozoa/metabolism , Animals , Biomarkers/metabolism , Male , Semen Analysis , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...