Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15598, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973275

ABSTRACT

In recent times, the use of natural and harmless products for the environment and restorer is taking place in the field of Cultural Heritage restoration. In this sense, wheat, rice and corn starches as adhesives, have suitable characteristics without toxicity risks. A new starch in this field, is the Kudzu, an almost pure compound (99.5% starch) that is processed by a natural way from a plant called Pueraria lobata. This is a preliminary study of the potential use of Kudzu starch for the restoration of Cultural Heritage, focusing, firstly, in its capacity as adhesive through a comparative evaluation with common starches. The accelerated aging process carried out proved that Kudzu ensures optimal chromatic behaviour. On the other hand, the main problem in starch paste is the biological colonization. The daidzein, a natural antimicrobial compound implicit in Kudzu starch, confirmed the resistance to microorganism in this preliminary approach. The evaluation of the adhesive capacity, and the reversibility of the starches, suggest that Kudzu starch is a valid adhesive in the field of paper restoration. Thus, the potential of this starch in the conservation of Cultural Heritage is evidenced and its use as cleaner, resistance to biological colonization and consolidant is promising.

2.
Article in English | MEDLINE | ID: mdl-29902771

ABSTRACT

The study of both original and decaying compounds is relevant in understanding the chemistry behind the deterioration processes, above all in open museum contexts where environmental stressors affect the artefacts. In this sense, a combination of non-invasive spectroscopy techniques (Raman spectroscopy, µ-X-ray fluorescence and X-ray diffraction) was applied on an ancient Roman building (130 CE), the "Casa di Diana" Mithraeum at Ostia Antica archaeological site. The aim is to study the raw materials, manufacturing and decaying products of the two observed types of Roman fired bricks (red and yellow) that compose the building. The present study estimates an illite raw material of carbonate-bearing marine clay likely referring to the common deposits of central/southern Italy, which contain calcite as accessory phase and a-plastic fraction constituted by quartz, feldspar and opaques. This clay material was added with volcanic temper characterised by abundant clinopyroxene and analcime (from analcimization of leucite) that are typical of the Roman Province volcanism. The firing would be probably the result of oxidizing conditions, as proved by the hematite presence. Thanks to the existence of specific neoformed mineral phases during firing it was possible to assess different temperatures ranges. In detail, the red/orange bricks, for the existence of gehlenite (formed from calcite and its reaction with silicates), were fired at 800-900 °C range; whereas, the yellow ones are characterised by the lack of gehlenite and the disappearance of illite/muscovite, which indicates firing temperature at over 900 °C. Regarding the decaying products, the gypsum covers most of the surface of most bricks, both red and the yellow ones, but these latter are more susceptible to environmental stressors (sulphates and carbonates). Therefore, this work points out how by integrated non-invasive approaches it is possible trace back to original firing temperature, technology of manufacture, interpreting ceramic data.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 203: 201-209, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29874634

ABSTRACT

This study aimed at using portable analytical techniques to characterize original and decayed materials from two murals paintings of Ariadne House (archaeological site of Pompeii, Italy) and define the degradation pathways threatening their conservation. The first wall, located in an outdoor environment, has been directly exposed to degradation processes triggered by weathering and atmospheric pollution. The second wall, placed in a basement under the ground floor, has been constantly sheltered from sunlight exposure and drastic temperature fluctuations. The analytical data obtained in-situ by using Raman spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS) correlates the degradation patterns affecting the two surfaces to their environmental context. The deterioration processes detected on the outdoor wall, which entailed the complete loss of the paint layer, were mostly related to leaching and thermal fluctuation phenomena. The mural painting from the basement instead, showed deep degradation issues due to soluble salt infiltration and biological colonization. The results obtained from this unique case of study highlight the indispensable role of in-situ spectroscopic analysis to understand and predict the degradation pathways jeopardizing the cultural heritage and provide to the Archaeological Park of Pompeii important inference to consider in future conservation projects.

4.
Environ Sci Pollut Res Int ; 23(7): 6390-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26620863

ABSTRACT

Raman spectroscopy differentiation of carotenoids has traditionally been based on the ν 1 position (C = C stretching vibrations in the polyene chain) in the 1500-1600 cm(-1) range, using a 785 nm excitation laser. However, when the number of conjugated double bonds is similar, as in the cases of zeaxanthin and ß-carotene, this distinction is still ambiguous due to the closeness of the Raman bands. This work shows the Raman results, obtained in resonance conditions using a 514 mm laser, on Lecanora campestris and Lecanora atra species, which can be used to differentiate and consequently characterize carotenoids. The presence of the carotenoid found in Lecanoraceae lichens has been demonstrated to depend on the atmospheric pollution level of the environment they inhabit. Astaxanthin, a superb antioxidant, appears as the principal xanthophyll in highly polluted sites, usually together with the UV screening pigment scytonemin; zeaxanthin is the major carotenoid in medium polluted environments, while ß-carotene is the major carotenoid in cleaner environments. Based on these observations, an indirect classification of the stress suffered in a given environment can be assessed by simply analysing the carotenoid content in the Lecanoraceae lichens by using resonance Raman imaging.


Subject(s)
Air Pollutants/analysis , Carotenoids/metabolism , Environmental Monitoring/methods , Lichens/metabolism , Air Pollutants/pharmacology , Antioxidants/metabolism , Lichens/drug effects , Spain , Spectrum Analysis, Raman , Xanthophylls/metabolism
5.
Environ Sci Pollut Res Int ; 21(21): 12518-29, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24946700

ABSTRACT

The relevance of a risk assessment of the built heritage was clearly justified due to the fact that it acts as a pollutant repository and hazardous pollutants have the capacity to penetrate into materials. However, the limitation of the sampling processes due to the high value of the built heritage makes a correct evaluation difficult. For that reason, in the present work, the potential of agar gels as non-invasive samplers of built heritage deterioration products, like crusts and patinas, was evaluated. Different gels of agar and Carbopol® (as control gel) were applied on these built surfaces considering several factors: the treatment time, the effectiveness of the addition of EDTA (ethylenediaminetetraacetic acid, C10H16N2O8) and its concentration and the use of a buffer at pH 7.5. All these factors were evaluated in order to determine the capacity of these gels as sampling systems under non-controlled atmospheric conditions. The results obtained in the assays were evaluated by visual examination, by evolution of pH and by the most important techniques used in the risk assessment analysis of the built heritage (Raman spectroscopy, scanning electron microscope (SEM)/energy dispersive X-ray (EDX) and inductively coupled plasma mass spectrometry (ICP-MS)). In this evaluation, the agar gels showed an intrinsic capacity as sampler with respect to the gel Carbopol® and thus, the best option between the studied gels consisted on agar gels with 2 % of EDTA and the longest application time. On the whole, the agar gels showed an interesting potential as non-invasive samplers of built heritage deterioration materials which should be studied more in depth.


Subject(s)
Construction Materials/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Agar/chemistry , Edetic Acid/chemistry , Gels , Hydrogen-Ion Concentration , Limit of Detection , Microscopy, Electron, Scanning , Risk Assessment , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman
6.
J Hazard Mater ; 248-249: 451-60, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23416873

ABSTRACT

In the present work the pollutant content of diverse building materials was evaluated by the combination of spectrometric and chromatographic techniques. A first non-destructive analysis carried out by µ-XRF and Raman spectroscopy revealed a high impact of pollutants, which reached depths higher than 6mm. The quantitative analyses pointed out that black crust as accumulation nucleus where concentration values up to 3408 mg/kg of lead, 752 mg/kg of chromium or 220 mg/kg of arsenic, high amounts of diverse sulphates and nitrates as well as substantial amounts of polycyclic aromatic hydrocarbons (PAHs) of a clear pyrolytic source were determined. On the other hand, samples without black crust showed also a surprising soluble salt content up to 5%. Polychlorinated biphenyls (PCB) were found to be absent in all material types. The chemometric analysis of the quantitative results revealed that the accumulation capacity and the subsequent pollutant content depends on the type of construction materials, being mortars the most susceptible.


Subject(s)
Air Pollutants/analysis , Construction Materials/analysis , Arsenic/analysis , Environmental Monitoring , Metals/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Salts/analysis , Spain
7.
Ultrason Sonochem ; 19(6): 1260-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22472497

ABSTRACT

The Italian recommendation NORMAL 13/83, later replaced by the UNI 11087/2003 norm, were used as standard for soluble salts extraction from construction materials. These standards are based on long-time stirring (72 and 2h, respectively) of the sample in deionized water. In this work two ultrasound based methods were optimized in order to reduce the extraction time while efficiency is improved. The instrumental variables involved in the extraction assisted by ultrasound bath and focused ultrasounds were optimized by experimental design. As long as it was possible, the same non-instrumental parameters values as those of standard methods were used in order to compare the results obtained on a mortar sample showing a black crust by the standards and the optimized methods. The optimal extraction time for the ultrasounds bath was found to be of two hours. Although the extraction time was equal to the standard UNI 11087/2003, the obtained extraction recovery was improved up to 119%. The focused ultrasound system achieved also better recoveries (up to 106%) depending on the analyte in 1h treatment time. The repeatabilities of the proposed ultrasound based methods were comparables to those of the standards. Therefore, the selection of one or the other of the ultrasound based methods will depend on topics such as laboratory facilities or number of samples, and not in aspects related with their quality parameters.

8.
Anal Bioanal Chem ; 399(9): 2949-59, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21057778

ABSTRACT

A multianalytical characterisation of black crusted modern construction materials from buildings located in the Bilbao Metropolitan area (North Spain) was carried out. According to the mineral composition determined by Raman spectroscopy, calcite and hematite were the major compounds found while aragonite, limonite, rutile, quartz and some aluminosilicates such as obsidian or amazonite (KAlSi(3)O(8)) were also present in minor percentages. As deterioration products, gypsum and anhydrite were widely found not only in the surface but also in the inner part of strongly deteriorated samples. Coquimbite (Fe(2)(SO(4))(3)·9H(2)O) was identified as well in the most protected facade where high amounts of Fe, having probably an anthropogenic origin, were measured by micro X-ray fluorescence (µ-XRF). Zn was found to be in high amounts while Cu, Pb, Ti, Mn, Sr and K were identified as minor elements. Considering the non-expected concentrations found for some anthropogenic elements, a sequential extraction was carried out in order to determine their chemical form by means of ion chromatography and inductively coupled plasma mass spectrometry. The orientation of the facades, which had a different influence from rain washing and industrial and traffic impact, was shown to affect the accumulation of different compounds in the black crust. Finally, the MEDUSA software was used to simulate the reactions among the original compounds, deposited pollutants and the atmospheric acid gases in order to explain the presence of the decaying species found.

SELECTION OF CITATIONS
SEARCH DETAIL
...