Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(59): 88440-88460, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36333631

ABSTRACT

Significant amounts of mining tailings are generated and disposed of every year in dams, leading to potentially serious environmental and safety problems. To identify alternatives for the disposal of these wastes, research works involving their potential application as precursors in the development of alkaline-activated materials have been published in recent years. In this context, the objective of this paper is to present an overview of the main contributions already made on the subject, identified through a bibliometric review and content analysis in the Scopus and Web of Science databases. There was an exponential growth of interest in the subject in the period 2019-2021, when more than 50% of the papers were published. The most used tailings and sub-areas of research were also identified.


Subject(s)
Alkalies , Bibliometrics , Databases, Factual
2.
Environ Sci Pollut Res Int ; 27(30): 37718-37732, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32607993

ABSTRACT

Exposure of geomaterials to acidic leachates may compromise their structure and functionality due to changes in physicochemical, mineralogical, and hydraulic behavior. The literature identifies the need to evaluate changes in a pure state and in conditions of extreme acidity. This study aimed to evaluate changes in the chemical, mineralogical, and morphological properties of Osorio fine uniform sand (OFS), basalt residual soil (BRS), kaolin (KAO), and bentonite (BEN) exposed to sulfuric acid in concentrations of 0.00 mol/L (distilled water), 0.01 mol/L, and 1.00 mol/L. The tested samples were characterized using X-ray fluorescence spectrometry, X-ray diffraction, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The acid attack on geomaterials by contact with the solution 1.00 mol/L has resulted in the solubilization of some constituent minerals, as well as the formation of sulfate minerals, changes in the water dehydration peak in the pores, and mass loss. The morphology of the sand and bentonite particles did not change with exposure to sulfuric acid. The acidic attack resulted in changes in the morphology of the particles for BRS and KAO. The results of this study are important for determining operational parameters of waste containment systems and contaminated areas, as well as for applying geomaterials as founding materials.


Subject(s)
Soil , Water Pollutants, Chemical/analysis , Bentonite , Microscopy, Electron, Scanning , Minerals , Sulfates , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...