Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(11): 3596-3611, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38477678

ABSTRACT

The best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (sister species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.


Subject(s)
Desert Climate , Phylogeny , Transcriptome , Chile , Adaptation, Physiological , Metabolic Networks and Pathways
2.
J Exp Bot ; 75(9): 2631-2643, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38349339

ABSTRACT

Ascorbate is involved in numerous vital processes, in particular in response to abiotic but also biotic stresses whose frequency and amplitude increase with climate change. Ascorbate levels vary greatly depending on species, tissues, or stages of development, but also in response to stress. Since its discovery, the ascorbate biosynthetic pathway has been intensely studied and it appears that GDP-l-galactose phosphorylase (GGP) is the enzyme with the greatest role in the control of ascorbate biosynthesis. Like other enzymes of this pathway, its expression is induced by various environmental and also developmental factors. Although mRNAs encoding it are among the most abundant in the transcriptome, the protein is only present in very small quantities. In fact, GGP translation is repressed by a negative feedback mechanism involving a small open reading frame located upstream of the coding sequence (uORF). Moreover, its activity is inhibited by a PAS/LOV type photoreceptor, the action of which is counteracted by blue light. Consequently, this multi-level regulation of GGP would allow fine control of ascorbate synthesis. Indeed, experiments varying the expression of GGP have shown that it plays a central role in response to stress. This new understanding will be useful for developing varieties adapted to future environmental conditions.


Subject(s)
Ascorbic Acid , Phosphoric Monoester Hydrolases , Ascorbic Acid/biosynthesis , Ascorbic Acid/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
3.
New Phytol ; 241(3): 1074-1087, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984856

ABSTRACT

Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.


Subject(s)
Biodiversity , Cactaceae , Plant Dispersal , Temperature , Plants/genetics , Desert Climate
4.
New Phytol ; 240(1): 242-257, 2023 10.
Article in English | MEDLINE | ID: mdl-37548068

ABSTRACT

The ascorbate-glutathione (ASC-GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients. Dynamic and associated regulations of the ASC-GSH cycle throughout the whole fruit development were analysed and pointed to a sequential metabolic control of redox fluxes by ASC synthesis, NAD(P)H and ROS availability depending on the developmental phase. Furthermore, we highlighted that monodehydroascorbate reductase and the availability of reducing power were found to be the main regulators of the redox state of ASC and GSH during fruit growth under optimal conditions. Our kinetic modelling approach indicated that tomato fruit development displayed growth phase-dependent redox metabolism linked with central metabolism via pyridine nucleotides and H2 O2 availability, while providing a new tool to the scientific community to investigate redox metabolism in fruits.


Subject(s)
Solanum lycopersicum , Reactive Oxygen Species/metabolism , Fruit , Oxidation-Reduction , Pyridines , Glutathione/metabolism , Ascorbic Acid
5.
Plant J ; 116(3): 786-803, 2023 11.
Article in English | MEDLINE | ID: mdl-37531405

ABSTRACT

Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity. Then a constraint-based method is applied to a panel of eight fruit species with a knowledge-based metabolic model of heterotrophic cells describing a generic metabolic network of primary metabolism. The metabolic fluxes are estimated by constraining the model using a large set of metabolites and compounds quantified throughout fruit development. Multivariate analyses showed a clear common pattern of flux distribution during fruit development with differences between fast- and slow-growing fruits. Only the latter fruits mobilise the tricarboxylic acid cycle in addition to glycolysis, leading to a higher rate of respiration. More surprisingly, to balance nitrogen, the model suggests, on the one hand, nitrogen uptake by nitrate reductase to support a high RGR at early stages of cucumber and, on the other hand, the accumulation of alkaloids during ripening of pepper and eggplant. Finally, building virtual fruits by combining 12 biomass compounds shows that the growth-defence trade-off is supported mainly by cell wall synthesis for fast-growing fruits and by total polyphenols accumulation for slow-growing fruits.


Subject(s)
Fruit , Metabolic Networks and Pathways , Fruit/metabolism , Glycolysis , Citric Acid Cycle , Nitrogen/metabolism
6.
BMC Plant Biol ; 23(1): 365, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37479985

ABSTRACT

BACKGROUND: The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS: We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS: The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit , Multiomics , Transcriptome , Metabolic Networks and Pathways , Gene Expression Regulation, Plant
7.
Opt Lett ; 48(2): 498-501, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638494

ABSTRACT

An array detector allows a resolution gain for confocal microscopy by combining images sensed by a set of photomultipliers tubes (or sub-detectors). Several methods have been proposed to reconstruct a high-resolution image by linearly combining sub-detector images, especially the fluorescence emission difference (FED) technique. To improve the resolution and contrast of FED microscopy based on an array detector, we propose to associate sparse denoising with spatial adaptive estimation. We show on both calibration slides and real data that our approach applied to the full stack of spatially reassigned detector signals, enables us to achieve a higher reconstruction performance in terms of resolution, image contrast, and noise reduction.


Subject(s)
Algorithms , Microscopy, Fluorescence , Microscopy, Confocal , Calibration
8.
Sci Rep ; 13(1): 1489, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707688

ABSTRACT

Modern fluorescent microscopy imaging is still limited by the optical aberrations and the photon budget available in the specimen. A direct consequence is the necessity to develop flexible and "off-road" algorithms in order to recover structural details and improve spatial resolution, which is critical when restraining the illumination to low levels in order to limit photo-damages. Here, we report SPITFIR(e) a flexible method designed to accurately and quickly restore 2D-3D fluorescence microscopy images and videos (4D images). We designed a generic sparse-promoting regularizer to subtract undesirable out-of-focus background and we developed a primal-dual algorithm for fast optimization. SPITFIR(e) is a "swiss-knife" method for practitioners as it adapts to any microscopy techniques, to various sources of signal degradation (noise, blur), to variable image contents, as well as to low signal-to-noise ratios. Our method outperforms existing state-of-the-art algorithms, and is more flexible than supervised deep-learning methods requiring ground truth datasets. The performance, the flexibility, and the ability to push the spatiotemporal resolution limit of sub-diffracted fluorescence microscopy techniques are demonstrated on experimental datasets acquired with various microscopy techniques from 3D spinning-disk confocal up to lattice light sheet microscopy.

10.
Bioinformatics ; 38(14): 3671-3673, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35639941

ABSTRACT

SUMMARY: Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms. The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often performed by combining several pieces of software (filtering, detection, tracking, etc.) requiring many manual operations, and thus leading to poorly reproducible results. Given the new segmentation tools based on deep learning, modularity and interoperability between software have become essential in particle tracking algorithms. A good synergy between a particle detector and a tracker is of paramount importance. In addition, a user-friendly interface to control the quality of estimated trajectories is necessary. To address these issues, we developed STracking, a Python library that allows combining algorithms into standardized particle tracking pipelines. AVAILABILITY AND IMPLEMENTATION: STracking is available as a Python library using 'pip install' and the source code is publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari plugins menu or using 'pip install'. The napari plugin source codes are available on GitHub (https://github.com/sylvainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Libraries , Software , Algorithms , Gene Library
11.
New Phytol ; 234(5): 1614-1628, 2022 06.
Article in English | MEDLINE | ID: mdl-35288949

ABSTRACT

Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.


Subject(s)
Brassicaceae , Ecosystem , Climate Change , Humans , Metabolomics , Plants , Species Specificity
12.
Hortic Res ; 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35043179

ABSTRACT

Grafting is an important horticultural technique used for many crop species. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. In general, visible phenotypes of grafted plants (size, root number, etc.) are poorly correlated with grafting success, but some studies have suggested that some polyphenols could be used as markers of graft incompatibility several months or years after grafting. However, much of the previous studies into metabolite markers of grafting success have not included all the controls necessary to unequivocally validate the markers proposed. In this study, we quantified 73 primary and secondary metabolites in nine hetero-grafts and six homo-grafted controls 33 days after grafting at the graft interface and in both the scion and rootstock woody tissues. Certain biomarker metabolites typical of a high stress status (such as proline, GABA and pallidol) were particularly accumulated at the graft interface of the incompatible scion/rootstock combination. We then used correlation analysis and generalized linear models to identify potential metabolite markers of grafting success measured one year after grafting. Here we present the first attempt to quantitatively predict graft compatibility and identify marker metabolites (especially asparagine, trans-resveratrol, trans-piceatannol and α-viniferin) 33 days after grafting, which was found to be particularly informative for homo-graft combinations.

13.
J Exp Bot ; 72(8): 3091-3107, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33530105

ABSTRACT

Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.


Subject(s)
Solanum lycopersicum , Ascorbic Acid , Fertility , Fruit/genetics , Solanum lycopersicum/genetics , Pollen/genetics
14.
Plant Cell Environ ; 44(5): 1504-1521, 2021 05.
Article in English | MEDLINE | ID: mdl-33410508

ABSTRACT

In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.


Subject(s)
Arabidopsis/metabolism , Cold-Shock Response/physiology , Metabolome , Proteome/metabolism , Zea mays/metabolism , Zea mays/physiology , Cold Temperature , Genotype , Phenotype , Photosynthesis , Plant Leaves/physiology , Plant Proteins/metabolism , Zea mays/genetics
15.
J Nutr ; 150(9): 2268-2277, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32805000

ABSTRACT

BACKGROUND: Plant raw materials are commonly used in aquafeeds, as marine resources are unsustainable. However, full plant-based diets lead to poorer fish growth performance. OBJECTIVE: We aimed to understand the metabolic effects of a yeast fraction as a protein supplement in a plant-based diet and to integrate such effects with phenotypic traits as a new approach to assess the interest of this raw material. METHODS: Juvenile (49 g) rainbow trout (Oncorhynchus mykiss) were fed graded levels of a yeast protein-rich fraction (5% YST05, 10% YST10, 15% YST15) in a plant-based diet (PB) for 84 d. Final body weight, feed conversion ratio, and hepatosomatic and viscerosomatic indexes were measured. Plasma, liver, and muscle 1H-NMR fingerprints were analyzed with principal component analyses, and their metabolite patterns were clustered according to the yeast level to identify concomitant metabolic effects. A regression modeling approach was used to predict tissue metabolite changes from plasma fingerprints. RESULTS: In tissues, the patterns of metabolite changes followed either linear trends with the gradual inclusion of a yeast fraction (2 patterns out of 6 in muscle, 1 in liver) or quadratic trends (4 patterns in muscle, 5 in liver). Muscle aspartate and glucose (395 and 138% maximum increase in relative content compared with PB, respectively) revealing modification in energy metabolism, as well as modification of liver betaine (163% maximum increase) and muscle histidine (57% maximum decrease) related functions, indicates that the yeast fraction could improve growth in several ways. The highest correlation between measured and predicted metabolite intensities in a tissue based on plasma fingerprints was observed for betaine in liver (r = 0.80). CONCLUSIONS: These findings herald a new approach to assess the plurality of metabolic effects induced by diets and establish the optimal level of raw materials. They open the way for using plasma as a noninvasive matrix in trout nutrition studies.


Subject(s)
Dietary Proteins/administration & dosage , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Oncorhynchus mykiss/growth & development , Plants/chemistry , Animal Feed/analysis , Animals , Body Weight/drug effects , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Fungal Proteins , Liver/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Saccharomyces cerevisiae
16.
J Exp Bot ; 71(19): 5823-5836, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32592486

ABSTRACT

Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.


Subject(s)
Actinidia , Climacteric , Biomass , Ethylenes , Fruit , Plant Breeding
17.
J Agric Food Chem ; 68(47): 13397-13407, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32227944

ABSTRACT

Grapevine canes are an abundant byproduct of the wine industry. The stilbene contents of Vitis vinifera cultivars have been largely studied, but little is known about the stilbene contents of wild Vitis accessions. Moreover, there have only been few studies on the quantification of other phenolic compounds in just pruned grapevine canes. In our study, we investigated the polyphenol profile of 51 genotypes belonging to 15 Vitis spp. A total of 36 polyphenols (20 stilbenes, 6 flavanols, 7 flavonols, and 3 phenolic acids) were analyzed by high-performance liquid chromatography coupled with a triple quadrupole mass spectrometer. Our results suggest that some wild Vitis accessions could be of interest in terms of the concentration of bioactive polyphenols and that flavanols contribute significantly to the antioxidant activity of grapevine cane extracts. To the best of our knowledge, this is the most exhaustive study of the polyphenolic composition of grapevine canes of wild Vitis spp.


Subject(s)
Plant Extracts/chemistry , Plant Stems/chemistry , Polyphenols/chemistry , Vitis/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Flavonols/chemistry , Flavonols/metabolism , Mass Spectrometry , Plant Extracts/metabolism , Plant Stems/metabolism , Polyphenols/metabolism , Stilbenes/chemistry , Stilbenes/metabolism , Vitis/growth & development , Vitis/metabolism
18.
Metabolites ; 10(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155921

ABSTRACT

Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different methods of application result in durable protection. Here, we demonstrate that the treatment of tomato plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea, Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic microbes that present different infection strategies. Metabolomic analyses revealed major changes after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore, top-down modelling from the detected metabolic markers allowed for the accurate prediction of the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is particularly insightful for a better understanding of defence priming in fruit. Further experiments are underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming in tomato fruit.

19.
Front Plant Sci ; 10: 1201, 2019.
Article in English | MEDLINE | ID: mdl-31681351

ABSTRACT

Central metabolism is the engine of plant biomass, supplying fruit growth with building blocks, energy, and biochemical cofactors. Among metabolic cornerstones, nicotinamide adenine dinucleotide (NAD) is particularly pivotal for electron transfer through reduction-oxidation (redox) reactions, thus participating in a myriad of biochemical processes. Besides redox functions, NAD is now assumed to act as an integral regulator of signaling cascades involved in growth and environmental responses. However, the regulation of NAD metabolism and signaling during fruit development remains poorly studied and understood. Here, we benefit from RNAseq and proteomic data obtained from nine growth stages of tomato fruit (var. Moneymaker) to dissect mRNA and protein profiles that link to NAD metabolism, including de novo biosynthesis, recycling, utilization, and putative transport. As expected for a cofactor synthesis pathway, protein profiles failed to detect enzymes involved in NAD synthesis or utilization, except for nicotinic acid phosphoribosyltransferase (NaPT) and nicotinamidase (NIC), which suggested that most NAD metabolic enzymes were poorly represented quantitatively. Further investigations on transcript data unveiled differential expression patterns during fruit development. Interestingly, among specific NAD metabolism-related genes, early de novo biosynthetic genes were transcriptionally induced in very young fruits, in association with NAD kinase, while later stages of fruit growth rather showed an accumulation of transcripts involved in later stages of de novo synthesis and in NAD recycling, which agreed with augmented NAD(P) levels. In addition, a more global overview of 119 mRNA and 78 protein significant markers for NAD(P)-dependent enzymes revealed differential patterns during tomato growth that evidenced clear regulations of primary metabolism, notably with respect to mitochondrial functions. Overall, we propose that NAD metabolism and signaling are very dynamic in the developing tomato fruit and that its differential regulation is certainly critical to fuel central metabolism linking to growth mechanisms.

20.
Biotechnol Bioeng ; 116(12): 3396-3408, 2019 12.
Article in English | MEDLINE | ID: mdl-31502665

ABSTRACT

The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto-GEM, the first genome-scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2,277 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose, and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols, and carotenoids identified genes-some of which have previously been engineered to successfully increase production. This renders rtho-GEM valuable for future studies to improve the production of other oleochemicals of industrial relevance including value-added fatty acids and carotenoids, in addition to facilitate system-wide omics-data analysis in R. toruloides. Expanding the portfolio of GEMs for lipid-accumulating fungi contributes to both understanding of metabolic mechanisms of the oleaginous phenotype but also uncover particularities of the lipid production machinery in R. toruloides.


Subject(s)
Basidiomycota , Genome, Fungal , Metabolic Networks and Pathways , Models, Biological , Basidiomycota/genetics , Basidiomycota/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...