Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(20): 2080-2096.e7, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37557174

ABSTRACT

During nervous system development, neurons choose synaptic partners with remarkable specificity; however, the cell-cell recognition mechanisms governing rejection of inappropriate partners remain enigmatic. Here, we show that mouse retinal neurons avoid inappropriate partners by using the FLRT2-uncoordinated-5 (UNC5) receptor-ligand system. Within the inner plexiform layer (IPL), FLRT2 is expressed by direction-selective (DS) circuit neurons, whereas UNC5C/D are expressed by non-DS neurons projecting to adjacent IPL sublayers. In vivo gain- and loss-of-function experiments demonstrate that FLRT2-UNC5 binding eliminates growing DS dendrites that have strayed from the DS circuit IPL sublayers. Abrogation of FLRT2-UNC5 binding allows mistargeted arbors to persist, elaborate, and acquire synapses from inappropriate partners. Conversely, UNC5C misexpression within DS circuit sublayers inhibits dendrite growth and drives arbors into adjacent sublayers. Mechanistically, UNC5s promote dendrite elimination by interfering with FLRT2-mediated adhesion. Based on their broad expression, FLRT-UNC5 recognition is poised to exert widespread effects upon synaptic partner choices across the nervous system.


Subject(s)
Neurons , Retina , Animals , Mice , Neurons/physiology , Signal Transduction , Cell Communication , Synapses/physiology , Dendrites/physiology , Membrane Glycoproteins/metabolism
2.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30850344

ABSTRACT

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Subject(s)
Homeostasis/physiology , Microglia/pathology , Retinal Degeneration/pathology , Animals , Disease Models, Animal , Epithelium, Corneal/pathology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Retina/pathology , Up-Regulation/physiology
3.
Curr Opin Neurobiol ; 53: 139-145, 2018 12.
Article in English | MEDLINE | ID: mdl-30092409

ABSTRACT

Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.


Subject(s)
Amacrine Cells/physiology , Dendrites/physiology , Morphogenesis/physiology , Nerve Net/growth & development , Neuronal Plasticity/physiology , Animals , Humans
4.
Int J Sci Eng Res ; 8(7): 502-506, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28845390

ABSTRACT

The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. ß-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and ß-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration.

5.
Int J Sci Eng Res ; 8(2): 680-699, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28580316

ABSTRACT

The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration.

6.
J Neurosci ; 36(27): 7184-97, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27383593

ABSTRACT

UNLABELLED: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.


Subject(s)
Membrane Potentials/physiology , Retina/cytology , Retinal Ganglion Cells/physiology , Vision, Ocular/physiology , Visual Pathways/physiology , Animals , Animals, Newborn , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Female , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Light , Male , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Retinal Ganglion Cells/classification , Retinal Ganglion Cells/drug effects , Rod Opsins/genetics , Rod Opsins/metabolism , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Transducin/genetics , Transducin/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vision, Ocular/genetics , beta-Galactosidase/metabolism
7.
Invest Ophthalmol Vis Sci ; 57(7): 3047-57, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27281270

ABSTRACT

PURPOSE: Retinal dopamine deficiency is a potential cause of myopia and visual deficits in retinopathy of prematurity (ROP). We investigated the cellular mechanisms responsible for lowered levels of retinal dopamine in an oxygen-induced retinopathy (OIR) mouse model of ROP. METHODS: Retinopathy was induced by exposing mice to 75% oxygen from postnatal day 7 (P7) to P12. Oxygen-induced retinopathy and age-matched control mice were euthanized at P12, P17, P25, or P42 to P50. Immunohistochemistry, electrophysiology, and biochemical approaches were used to determine the effect of OIR on the structure and function of dopaminergic amacrine cells (DACs). RESULTS: The total number of DACs was unchanged in OIR retinas at P12 despite significant capillary dropout in the central retina. However, a significant loss of DACs was observed in P17 OIR retinas (in which neovascularization was maximal), with the cell loss being more profound in the central (avascular) than in the peripheral (neovascular) regions. Cell loss was persistent in both regions at P25, at which time retinal neovascularization had regressed. At P42, the percentage of DACs lost (54%) was comparable to the percent decrease in total dopamine content (53%). Additionally, it was found that DACs recorded in OIR retinas at P42 to P50 had a complete dendritic field and exhibited relatively normal spontaneous and light-induced electrical activity. CONCLUSIONS: The results suggest that remaining DACs are structurally and functionally intact and that loss of DACs is primarily responsible for the decreased levels of retinal dopamine observed after OIR.


Subject(s)
Amacrine Cells/pathology , Amacrine Cells/physiology , Retinal Neovascularization/physiopathology , Analysis of Variance , Animals , Animals, Newborn , Blotting, Western , Disease Models, Animal , Dopamine/metabolism , Immunohistochemistry , Ischemia/physiopathology , Mice , Mice, Inbred C57BL , Oxygen/pharmacology , Retina/physiopathology , Retinal Vessels/physiopathology , Retinopathy of Prematurity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...