Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(29): 44404-44412, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35133597

ABSTRACT

Previous ecological studies suggest the existence of possible interplays between the exposure to air pollutants and SARS-CoV-2 infection. Confirmations at individual level, however, are lacking. To explore the relationships between previous exposure to particulate matter < 10 µm (PM10) and nitrogen dioxide (NO2), the clinical outcome following hospital admittance, and lymphocyte subsets in COVID-19 patients with pneumonia. In 147 geocoded patients, we assessed the individual exposure to PM10 and NO2 in the 2 weeks before hospital admittance. We divided subjects according to the clinical outcome (i.e., discharge at home vs in-hospital death), and explored the lymphocyte-related immune function as an index possibly affecting individual vulnerability to the infection. As compared with discharged subjects, patients who underwent in-hospital death presented neutrophilia, lymphopenia, lower number of T CD45, CD3, CD4, CD16/56 + CD3 + , and B CD19 + cells, and higher previous exposure to NO2, but not PM10. Age and previous NO2 exposure were independent predictors for mortality. NO2 concentrations were also negatively related with the number of CD45, CD3, and CD4 cells. Previous NO2 exposure is a co-factor independently affecting the mortality risk in infected individuals, through negative immune effects. Lymphopenia and altered lymphocyte subsets might precede viral infection due to nonmodifiable (i.e., age) and external (i.e., air pollution) factors. Thus, decreasing the burden of air pollutants should be a valuable primary prevention measure to reduce individual susceptibility to SARS-CoV-2 infection and mortality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Lymphopenia , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Hospital Mortality , Humans , Immunity , Lymphopenia/chemically induced , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2
2.
J Clin Endocrinol Metab ; 87(6): 2843-8, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12050261

ABSTRACT

This study aimed to evaluate the effects of changes in sex hormones occurring during the menstrual cycle on the redox balance and lipid peroxidation in normal human endometrial cells. Forty women, ages 21-41 yr, who were admitted to the Department of Gynecology and Obstetrics of the University of Bari for routine checkups or were treated for benign uterine disease, underwent endometrial biopsy and venipuncture. On the basis of histological examination, patients were allocated as follows: 10 in the early proliferative phase, 12 in the late proliferative phase, 8 in the early secretory phase, and 10 in the late secretory phase. LH, FSH (immunoradiometric essay), estradiol (E2), and progesterone (P(4)) (RIA) were determined in plasma samples. On the endometrial specimens, total glutathione (GSH), oxidized GSH (GSSG), malondialdehyde, and GSH peroxidase activity (GSH-Px) were determined. Significant cycle-dependent changes in endometrial GSH-Px (P < 0.0001), GSH (P < 0.001), and GSSG as a percentage of GSH (P < 0.0001) were observed. Malondialdehyde did not show significant differences. A linear regression model correlating sex hormone changes with redox indexes was performed. A significant positive correlation was observed between E2 and GSH-Px (r = 0.74; P = 0.0001), E2 and GSSG, as percentage of total (r = 0.84; P < 0.0001); a negative correlation was found between E2 and GSH (r = -0.57; P = 0.0001). No significant correlation was found between P(4) or FSH and oxidative balance. LH was found to be correlated with GSH-Px (r = 0.66; P = 0.0001) and GSSG as percentage of GSH (r = 0.5; P < 0.001). We conclude that the hormonal pattern is involved in maintaining the optimal redox balance in endometrium, mainly through modulation of GSH level and metabolism.


Subject(s)
Endometrium/metabolism , Gonadal Steroid Hormones/metabolism , Menstrual Cycle/metabolism , Adult , Endometrium/cytology , Estradiol/metabolism , Female , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Humans , Luteinizing Hormone/metabolism , Malondialdehyde/metabolism , Oxidation-Reduction
3.
Toxicol Lett ; 123(2-3): 209-16, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11641048

ABSTRACT

Mitochondrial oxidative balance and myocardial fibrosis were investigated in pair-fed rats received ethanol (3%) or saccharose in drinking water for 8 weeks. The concentrations of glutathione, malondialdehyde, protein carbonyls and sulfhydrils were determined. The presence and distribution of fibronectin were detected by immunohistochemistry. The myocardial concentrations of reduced glutathione and protein sulfhydrils were lower in ethanol treated rats. The oxidised/reduced glutathione ratio, the levels of malondialdehyde and protein carbonyls were higher in ethanol-treated rats. The mitochondrial amount of proteins, glutathione and protein sulfhydrils were lower in ethanol treated rats, whereas the content of protein carbonyls and malondialdehyde were higher. Accumulation of fibronectin was detected at subepicardial and subendocardial districts in ethanol-treated rats, with moderate degree of fibrosis in 20% of the cases. In conclusion, moderate ethanol consumption is associated with oxidative damage to heart mitochondria and fibronectin deposition. These oxidative and ultrastuctural changes may be assumed as basic alterations in the development of alcoholic cardiomyopathy.


Subject(s)
Cardiomyopathies/pathology , Ethanol/toxicity , Mitochondria, Heart/drug effects , Administration, Oral , Alcoholism/complications , Animals , Body Weight/drug effects , Cardiomyopathies/blood , Cardiomyopathies/etiology , Drug Administration Schedule , Ethanol/administration & dosage , Ethanol/blood , Fibronectins/metabolism , Fibrosis , Glutathione/metabolism , Heart Atria/drug effects , Heart Atria/metabolism , Heart Atria/pathology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/pathology , Immunohistochemistry , Ketones/metabolism , Male , Malondialdehyde/metabolism , Mitochondria, Heart/pathology , Myocardium/metabolism , Myocardium/pathology , Organ Size/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...