Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Clin Immunol ; 44(2): 49, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231350

ABSTRACT

Syndrome of undifferentiated recurrent fever (SURF) is characterized by recurrent fevers, a lack of confirmed molecular diagnosis, and a complete or partial response to colchicine. Despite the clinical similarities to familial Mediterranean fever (FMF), the underlying inflammatory mechanisms of SURF are not yet understood. We here analyzed the in vitro activation of the pyrin inflammasome in a cohort of SURF patients compared to FMF and PFAPA patients. Peripheral blood mononuclear cells (PBMC) were collected from SURF (both colchicine-treated and untreated), FMF, PFAPA patients, and healthy donors. PBMC were stimulated ex vivo with Clostridium difficile toxin A (TcdA) and a PKC inhibitor (UCN-01), in the presence or absence of colchicine. The assembly of the pyrin inflammasome was evaluated by measuring the presence of apoptosis-associated Speck-like protein containing caspase recruitment domain (ASC) specks in monocytes using flow cytometry. IL-1ß secretion was quantified using an ELISA assay. No differences in TcdA-induced activation of pyrin inflammasome were observed among FMF, PFAPA, and healthy donors. Untreated SURF patients showed a reduced response to TcdA, which was normalized after colchicine treatment. In contrast to FMF, SURF patients, similar to PFAPA patients and healthy donors, did not exhibit pyrin inflammasome activation in response to UCN-01-mediated pyrin dephosphorylation. These data demonstrate that in vitro functional analysis of pyrin inflammasome activation can differentiate SURF from FMF and PFAPA patients, suggesting the involvement of the pyrin inflammasome in the pathophysiology of SURF.


Subject(s)
Colchicine , Familial Mediterranean Fever , Humans , Colchicine/pharmacology , Colchicine/therapeutic use , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/drug therapy , Inflammasomes , Leukocytes, Mononuclear , Pyrin/genetics
2.
Methods Mol Biol ; 2696: 281-297, 2023.
Article in English | MEDLINE | ID: mdl-37578730

ABSTRACT

Autoinflammatory diseases are a group of distinct disorders characterized by recurrent fever and inflammatory manifestations predominantly mediated by cytokines of the innate immune system, particularly IL-1ß, without involvement of autoantibodies or autoreactive T lymphocytes. Cryopyrin-associated periodic syndromes (CAPS), due to NLRP3 gene mutations, represent the prototype of these diseases. Owing to their genetic nature, most of these disorders have an early onset, ranging from the first hours to the first decade of life. Due to the rarity of CAPS patients and to the limitations of working with pediatric samples, the development of animal models of this disease is of great help for studying both pathophysiology and therapeutic strategies. In this chapter, we review the generation and characterization of a knock-in mouse bearing the NLRP3 gene with the N475K mutation, associated with CINCA, the most severe form of human CAPS.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Humans , Mice , Animals , Child , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-1beta/genetics , Cytokines/genetics , Mutation , Disease Models, Animal
3.
J Endocr Soc ; 7(9): bvad103, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37564886

ABSTRACT

Context: Rapid-onset obesity with central hypoventilation, hypothalamic dysfunction, and autonomic dysregulation with neural crest tumors (ROHHAD-NET) syndrome pathophysiology remains elusive. Acquired neuroimmunological dysfunction has been proposed as a possible pathogenetic pathway. Objective: The aim of our study was to characterize lymphocyte subpopulations subsets in peripheral blood (PB) and to evaluate a panel of proinflammatory cytokines/chemokines in ROHHAD(NET) patients vs controls. Methods: We included 11 ROHHAD(NET) patients, 7 ROHHAD and 4 ROHHAD-NET, selected by clinical criteria. Controls were 11 simple obese children, matched for age and sex. Flow cytometric analysis and enzyme-linked immunosorbent assay were performed on PB and serum samples of the 2 groups. Results: Analysis revealed that T lymphocytes are significantly increased in ROHHAD(NET) patients (P = .04) with a prevalence of CD4-T cells (P = .03) and a lower number of activated CD8-T cells (P = .02). With regard to regulatory subset, patients displayed increased regulatory B cells (P = .05) and type-1 regulatory T cells (P = .03). With regard to CD8-T cells, a lower number of T effector memory was observed (P = .02). In contrast, among CD4-T cells, we found a higher number of T naive (P = .04) and T effector (P = .0008). Interleukin-8 (IL-8) levels and monocyte chemotactic protein-1 were increased in patients vs controls (P = .008 and P = .01, respectively). Furthermore, IL-8 levels were higher in the subgroup with neural tumor (P = .0058) (ROHHAD-NET) than in patients without neural tumor (ROHHAD). Soluble HLA-G was significantly lower in patients vs controls (P = .03). Conclusion: Our findings contribute to support the hypothesis of immune dysregulation, which may underlie this complex, often fatal disease. Because ROHHAD(NET) syndrome is an ultra-rare disease, multicentric studies are needed to improve the effect of our data in the management of this condition.

4.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298536

ABSTRACT

(1) Background: Familial Mediterranean Fever (FMF) is the prototypal autoinflammatory disease, characterized by recurrent bursts of neutrophilic inflammation. (2) Methods: In this study we look at the most recent literature on this condition and integrate it with novel information on treatment resistance and compliance. (3) Results: The canonical clinical presentation of FMF is in children with self-limited episodes of fever and polyserositis, associated with severe long-term complications, such as renal amyloidosis. It has been described anecdotally since ancient times, however only recently it has been characterized more accurately. We propose an updated overview on the main aspects of pathophysiology, genetics, diagnosis and treatment of this intriguing disease. (4) Conclusions: Overall, this review presents the all the main aspects, including real life outcome of the latest recommendation on treatment resistance of FMF, a disease, that not only helped understanding the pathophysiology of the auto inflammatory process but also the functioning of the innate immune system itself.


Subject(s)
Amyloidosis , Familial Mediterranean Fever , Child , Humans , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/drug therapy , Familial Mediterranean Fever/genetics , Colchicine/therapeutic use , Amyloidosis/etiology , Fever/drug therapy , Diagnosis, Differential , Inflammation/drug therapy
6.
J Clin Invest ; 133(1)2023 01 03.
Article in English | MEDLINE | ID: mdl-36282598

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19/genetics , T-Lymphocytes, Regulatory , Inflammation/genetics , Receptor, Notch1/genetics , Sialic Acid Binding Ig-like Lectin 2
7.
Front Immunol ; 13: 919237, 2022.
Article in English | MEDLINE | ID: mdl-35967303

ABSTRACT

Actin-related protein 2/3 complex subunit 1B (ARPC1B) deficiency is a recently described inborn error of immunity (IEI) presenting with combined immunodeficiency and characterized by recurrent infections and thrombocytopenia. Manifestations of immune dysregulation, including colitis, vasculitis, and severe dermatitis, associated with eosinophilia, hyper-IgA, and hyper-IgE are also described in ARPC1B-deficient patients. To date, hematopoietic stem cell transplantation seems to be the only curative option for patients. ARPC1B is part of the actin-related protein 2/3 complex (Arp2/3) and cooperates with the Wiskott-Aldrich syndrome protein (WASp) in the regulation of the actin cytoskeleton remodeling and in driving double-strand break clustering for homology-directed repair. In this study, we aimed to investigate radiosensitivity (RS) in ARPC1B-deficient patients to assess whether it can be considered an additional disease trait. First, we performed trio-based next-generation-sequencing studies to obtain the ARPC1B molecular diagnosis in our index case characterized by increased RS, and then we confirmed, using three different methods, an increment of radiosensitivity in all enrolled ARPC1B-deficient patients. In particular, higher levels of chromatid-type aberrations and γH2AX foci, with an increased number of cells arrested in the G2/M-phase of the cell cycle, were found in patients' cells after ionizing radiation exposition and radiomimetic bleomycin treatment. Overall, our data suggest increased radiosensitivity as an additional trait in ARPC1B deficiency and support the necessity to investigate this feature in ARPC1B patients as well as in other IEI with cytoskeleton defects to address specific clinical follow-up and optimize therapeutic interventions.


Subject(s)
Actin-Related Protein 2-3 Complex , Cytoskeleton , Actin-Related Protein 2 , Cytoskeleton/metabolism , Humans , Radiation Tolerance/genetics
8.
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Article in English | MEDLINE | ID: mdl-35835255

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Anti-Inflammatory Agents , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , DNA, Complementary , Humans , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Receptors, Interleukin-1 , SARS-CoV-2
9.
Semin Arthritis Rheum ; 55: 152024, 2022 08.
Article in English | MEDLINE | ID: mdl-35598507

ABSTRACT

OBJECTIVES: To describe a homogeneous group of patients with undifferentiated recurrent fevers followed-up in a tertiary referral center for systemic autoinflammatory diseases (SAIDs). METHODS: Patients with undifferentiated recurrent fevers seen at our Center from 2008 to 2021 and followed-up for at least one year were included in a retrospective study. Monogenic recurrent fevers, patients carrying variants of unknown origin and PFAPA (Periodic Fever, Aphthous Stomatitis, Pharyngitis, Adenitis) syndrome were excluded. RESULTS: Fifty patients (34 male, 16 female) were included in the study. The median age at onset was 3 years, and the median follow-up was 3.3 years. At baseline, arthralgia (70%) and abdominal pain (65%) were the most frequent manifestations. NSAIDs or steroids on demand had a variable and transient effect. Tonsillectomy was ineffective in the 10 patients (20%) that underwent surgery. Forty-eight patients (96%) were treated with colchicine. A complete response (absence of fever) was achieved in 31 patients (64.6%). Nine patients (18%) showed a partial response, with a median reduction of fever episodes per year of 72%. Nine patients (16.7%) were considered resistant to colchicine. The presence of generalized lymphadenopathy and, to a lesser extent, exudative tonsillitis was associated with a lack of response to colchicine. CONCLUSIONS: We describe the largest series of patients with syndrome of undifferentiated recurrent fever (SURF) reported in the literature so far. SURF should be considered as a distinct clinical entity in the context of multifactorial autoinflammatory diseases.


Subject(s)
Hereditary Autoinflammatory Diseases , Lymphadenitis , Pharyngitis , Stomatitis, Aphthous , Colchicine/therapeutic use , Female , Fever/etiology , Follow-Up Studies , Humans , Lymphadenitis/complications , Lymphadenitis/drug therapy , Lymphadenitis/surgery , Male , Pharyngitis/complications , Pharyngitis/drug therapy , Pharyngitis/surgery , Retrospective Studies , Stomatitis, Aphthous/complications , Stomatitis, Aphthous/drug therapy , Stomatitis, Aphthous/surgery , Syndrome
10.
Nat Commun ; 13(1): 2321, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484149

ABSTRACT

Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.


Subject(s)
Leukocytes, Mononuclear , Nucleotidyltransferases , COP-Coated Vesicles/metabolism , Coat Protein Complex I/metabolism , Electron Transport Complex I/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
11.
Res Sq ; 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35441180

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcome were previously correlated with Notch4 expression on regulatory T (Treg) cells, here we show that the Treg cells in MIS-C are destabilized in association with increased Notch1 expression. Genetic analysis revealed that MIS-C patients were enriched in rare deleterious variant impacting inflammation and autoimmunity pathways, including dominant negative mutations in the Notch1 regulators NUMB and NUMBL. Notch1 signaling in Treg cells induced CD22, leading to their destabilization in an mTORC1 dependent manner and to the promotion of systemic inflammation. These results establish a Notch1-CD22 signaling axis that disrupts Treg cell function in MIS-C and point to distinct immune checkpoints controlled by individual Treg cell Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.

13.
Eur J Immunol ; 51(1): 206-219, 2021 01.
Article in English | MEDLINE | ID: mdl-32707604

ABSTRACT

Adenosine deaminase 2 deficiency (DADA2) is an autoinflammatory disease characterized by inflammatory vasculopathy, early strokes associated often with hypogammaglobulinemia. Pure red cell aplasia, thrombocytopenia, and neutropenia have been reported. The defect is due to biallelic loss of function of ADA2 gene, coding for a protein known to regulate the catabolism of extracellular adenosine. We therefore investigated immune phenotype and B- and T-cell responses in 14 DADA2 patients to address if ADA2 mutation affects B- and T-cell function. Here, we show a significant decrease in memory B cells, in particular class switch memory, and an expansion of CD21low B cells in DADA2 patients. In vitro stimulated B lymphocytes were able to secrete nonfunctional ADA2 protein, suggesting a cell intrinsic defect resulting in an impairment of B-cell proliferation and differentiation. Moreover, CD4+ and CD8+ T cells were diminished; however, the frequency of circulating T follicular helper cells was significantly increased but they had an impairment in IL-21 production possibly contributing to an impaired B cell help. Our findings suggest that ADA2 mutation could lead to a B-cell intrinsic defect but also to a defective Tfh cell function, which could contribute to the immunodeficient phenotype reported in DADA2 patients.


Subject(s)
Adenosine Deaminase/deficiency , Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Intercellular Signaling Peptides and Proteins/deficiency , Severe Combined Immunodeficiency/immunology , T Follicular Helper Cells/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adolescent , Adult , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Case-Control Studies , Cell Differentiation , Cell Proliferation , Child , Child, Preschool , Female , Humans , Immunologic Memory , Immunophenotyping , In Vitro Techniques , Infant , Infant, Newborn , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Interleukins/biosynthesis , Lymphocyte Activation , Male , Mutation , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , T Follicular Helper Cells/pathology
14.
Oncoimmunology ; 7(1): e1378843, 2017.
Article in English | MEDLINE | ID: mdl-29296542

ABSTRACT

GD2-redirected chimeric antigen receptor (CAR) T lymphocytes represent a promising therapeutic option for immunotherapy of neuroblastoma (NB). However, despite the encouraging therapeutic effects observed in some hematological malignancies, clinical results of CAR T cell immunotherapy in solid tumors are still modest. Tumor driven neo-angiogenesis supports an immunosuppressive microenvironment that influences treatment responses and is amenable to targeting with antiangiogenic drugs. The latter agents promote lymphocyte tumor infiltration by transiently reprogramming tumor vasculature, and may represent a valid combinatorial approach with CAR T cell immunotherapy. In light of these considerations, we investigated the anti-NB activity of GD2-CAR T cells combined with bevacizumab (BEV) in an orthotopic xenograft model of human NB. Two weeks after tumor implantation, mice received BEV or GD2-CAR T cells or both by single intravenous administration. GD2-CAR T cells exerted a significant anti-NB activity only in combination with BEV, even at the lowest concentration tested, which per se did not inhibit tumor growth. When combined with BEV, GD2-CAR T cells massively infiltrated tumor mass where they produced interferon-γ (IFN-γ), which, in turn, induced expression of CXCL10 by NB cells. IFN-γ, and possibly other cytokines, upregulated NB cell expression of PD-L1, while tumor infiltrating GD2-CAR T cells expressed PD-1. Thus, the PD-1/PD-L1 axis can limit the anti-tumor efficacy of the GD2-CAR T cell/BEV association. This study provides a strong rationale for testing the combination of GD2-CAR T cells with BEV in a clinical trial enrolling NB patients. PD-L1 silencing or blocking strategies may further enhance the efficacy of such combination.

15.
Clin Exp Rheumatol ; 34(6 Suppl 102): S121-S128, 2016.
Article in English | MEDLINE | ID: mdl-27310036

ABSTRACT

OBJECTIVES: Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is a multisystemic autoinflammatory condition associated with heterozygous TNFRSF1A mutations, presenting with a variety of clinical symptoms, many of which yet unexplained. In this work, we aimed at deepening into TRAPS pathogenic mechanisms sustained by monocytes. METHODS: Microarray experiments were conducted to identify genes whose expression results altered in patients compared to healthy individuals, both under basal condition and following LPS stimulation. RESULTS: An inflammatory state baseline, characterised by constitutive overexpression of IL1ß and IL1R1 receptor, has been shown in TRAPS patients compared to controls, including in non-active disease phases. Following LPS stimulation, IL1RN up-regulation is stronger in controls than in patients and inflammatory pathways and microRNAs undergo differential regulation. Genes involved in post-translational modifications, protein folding and ubiquitination result constitutively up-regulated in TRAPS, while response to interferon types I and II is defective, failing to be up-regulated by LPS. TGFß pathway is down-regulated in untreated TRAPS monocytes, while genes involved in redox regulation result constitutively over-expressed. Finally, additional molecular alterations seem to reflect organ failures sometime complicating the disease. CONCLUSIONS: Gene expression profile in resting TRAPS monocytes has confirmed the patients' chronic inflammatory condition. In addition, pathways not yet associated with the disease have been disclosed, such as interferon types I and II response to LPS stimulation and a downregulation of the TGFß pathway in basal condition. The role of miRNA, suggested by our results, deserves in-depth analyses in light of the possible development of targeted therapies.


Subject(s)
Fever/genetics , Gene Expression Regulation , Hereditary Autoinflammatory Diseases/genetics , Inflammation Mediators/metabolism , Monocytes/metabolism , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Fever/diagnosis , Fever/immunology , Fever/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/metabolism , Heterozygote , Humans , Inflammation Mediators/immunology , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/metabolism , Lipopolysaccharides/pharmacology , Male , Monocytes/drug effects , Monocytes/immunology , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Polymerase Chain Reaction , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Reproducibility of Results
16.
Pharmacol Rep ; 68(3): 654-61, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27026293

ABSTRACT

BACKGROUND: We describe the potentiation of antiproliferative and apoptotic activities triggered by cis-diamminedichloroplatinum(II) (DDP), and obtained in vitro by the co-administration of procainamide hydrochloride (PdHCl) in murine P388, and human A2780 and A549 cells. METHODS: We determined the antiproliferative and apoptotic activities of DDP and PdHCl combinations by different techniques. Moreover, cell cycle analysis, restriction enzyme inhibition followed by agarose gel electrophoresis, and TUNEL analysis of tumour cells in vivo were also used to strengthen our hypothesis. RESULTS: Our results show that PdHCl may significantly increase the inhibition of cell proliferation and apoptosis. Experiments in vivo showed that the co-administration of DDP and PdHCl increased the percentage of apoptotic cells compared to DDP alone treatment, both in subcutaneous (sc) and intraperitoneal (ip) P388 tumours. We finally demonstrated that the co-administration of PdHCl prevents DNA digestion accounting for a restriction enzyme inhibition that in some cases was greater than that obtained by DDP alone. Moreover, when PdHCl was mixed with the reaction products (RP) of DDP (RP-PdHCl) we obtained a restriction enzyme inhibition greater for some enzymes (Bsp1407I, Hin1II, and Psp1406I) than that obtained by the DDP-PdHCl solution. CONCLUSIONS: On the whole our data demonstrate that the class I antiarrhythmic drug PdHCl may increase the antiproliferative activity of DDP by improving its triggering of apoptosis, and that this phenomenon may be likely linked to the formation of a new Pt compound.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Procainamide/pharmacology , Animals , Anti-Arrhythmia Agents/pharmacology , Cell Cycle/drug effects , Cells, Cultured , Drug Synergism , Humans , Mice , Restriction Mapping
17.
Immunobiology ; 221(2): 291-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26547104

ABSTRACT

In a previous study, lack of IL-12 signaling in il12rb2 knock-out mice was found to predispose to lung adenocarcinoma (LAC). We asked whether specific polymorphisms of the human IL12RB2 gene may confer susceptibility to LAC. We studied IL12RB2 single nucleotide polymorphisms (SNPs) spanning from the promoter to the first untranslated exon of the gene. Genotypes of 49 individuals with LAC were compared with those of 93 healthy subjects. Two allele variants were found to be associated with increased susceptibility to LAC. One haplotype (hap), hap18, was more frequent in patients (18%) versus controls (6%) and significantly associated with increased probability of disease occurrence. Furthermore, IL-12 driven STAT4 phosphorylation in T cell blasts from healthy individuals was found to correlate with both single allele variants and haplotypes. In conclusion, genetically determined low signaling activity of IL-12R predisposes to the development of LAC.


Subject(s)
Adenocarcinoma/genetics , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Receptors, Interleukin-12/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Alleles , Animals , Case-Control Studies , Exons , Female , Gene Expression Regulation , Gene Frequency , Haplotypes , Humans , Interleukin-12/genetics , Interleukin-12/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Phosphorylation , Promoter Regions, Genetic , Receptors, Interleukin-12/immunology , Risk , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Untranslated Regions
18.
Oncoimmunology ; 4(10): e1030560, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26451300

ABSTRACT

Interleukin (IL)-17A belongs to IL-17 superfamily and binds the heterodimeric IL-17 receptor (R)(IL-17RA/IL-17RC). IL-17A promotes germinal center (GC) formation in mouse models of autoimmune or infectious diseases, but the role of IL-17A/IL-17AR complex in human neoplastic GC is unknown. In this study, we investigated expression and function of IL-17A/IL-17AR in the microenvironments of 44 B cell non-Hodgkin lymphomas (B-NHL) of GC origin (15 follicular lymphomas, 17 diffuse large B cells lymphomas and 12 Burkitt lymphomas) and 12 human tonsil GC. Furthermore, we investigated the role of IL-17A in two in vivo models of GC B cell lymphoma, generated by s.c. injection of SU-DHL-4 and OCI-Ly8 cell lines in Severe combined immunodeficiency (SCID)/Non Obese Diabetic (NOD) mice. We found that: (i) B-NHL cell fractions and tonsil GC B cells expressed IL-17RA/IL-17RC, (ii) IL-17A signaled in both cell types through NF-kBp65, but not p38, ERK-1/2, Akt or NF-kBp50/105, phosphorylation, (iii) IL-17A was expressed in T cells and mast cells from neoplastic and normal GC microenvironments, (iv) IL-17A rendered tonsil GC B cells competent to migrate to CXCL12 and CXCL13 by downregulating RGS16 expression; (v) IL-17A stimulated in vitro proliferation of primary B-NHL cells; (vi) IL-17A (1 µg/mouse-per dose) stimulated B-NHL growth in two in vivo models by enhancing tumor cell proliferation and neo-angiogenesis. This latter effect depended on IL-17A-mediated induction of pro-angiogenic gene expression in tumor cells and direct stimulation of endothelial cells. These data define a previously unrecognized role of human IL-17A in promoting growth of GC-derived B-NHL and modulating normal GC B cell trafficking.

19.
Blood ; 125(15): 2349-58, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25612623

ABSTRACT

We prospectively assessed functional and phenotypic characteristics of γδ T lymphocytes up to 7 months after HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) depleted of αß(+) T cells and CD19(+) B cells in 27 children with either malignant or nonmalignant disorders. We demonstrate that (1) γδ T cells are the predominant T-cell population in patients during the first weeks after transplantation, being mainly, albeit not only, derived from cells infused with the graft and expanding in vivo; (2) central-memory cells predominated very early posttransplantation for both Vδ1 and Vδ2 subsets; (3) Vδ1 cells are specifically expanded in patients experiencing cytomegalovirus reactivation and are more cytotoxic compared with those of children who did not experience reactivation; (4) these subsets display a cytotoxic phenotype and degranulate when challenged with primary acute myeloid and lymphoid leukemia blasts; and (5) Vδ2 cells are expanded in vitro after exposure to zoledronic acid (ZOL) and efficiently lyse primary lymphoid and myeloid blasts. This is the first detailed characterization of γδ T cells emerging in peripheral blood of children after CD19(+) B-cell and αß(+) T-cell-depleted haplo-HSCT. Our results can be instrumental to the development of clinical trials using ZOL for improving γδ T-cell killing capacity against leukemia cells. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Subject(s)
Antigens, CD19/analysis , B-Lymphocytes/cytology , Hematopoietic Stem Cell Transplantation , Leukemia/therapy , Receptors, Antigen, T-Cell, alpha-beta/analysis , Receptors, Antigen, T-Cell, gamma-delta/analysis , T-Lymphocytes/transplantation , Adolescent , Cell Degranulation , Cells, Cultured , Child , Child, Preschool , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Male , T-Lymphocytes/cytology
20.
Front Oncol ; 3: 167, 2013.
Article in English | MEDLINE | ID: mdl-23805414

ABSTRACT

According to the cancer immunoediting model, the interplay between tumor cells and the host immune system is crucial for the control of tumor growth. NB is a pediatric tumor that presents with metastatic disease at diagnosis in about 50% of the cases, the majority of which have poor prognosis. In this Review article, immune escape pathways adopted by human neuroblastoma (NB) cells are reviewed. These include intrinsic defects of tumor cells such impaired expression of the HLA class I related antigen processing machinery and functional alterations of the tumor microenvironment (TM) induced by NB cell-derived immunosuppressive molecules as MICA and HLA-G. Finally, examples of therapeutic interventions targeting the TM are discussed to emphasize the concept that successful cancer treatment may be achieved using this strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...