Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 645, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904867

ABSTRACT

The conversion of large-scale agricultural land into urban areas poses a significant challenge to achieving national and global food security targets, as outlined in Sustainable Development Goal number 2, which aims to eradicate hunger. Indonesia has experienced a significant decline in rice field areas, with a reduction of approximately 650 thousand hectares within a year (2017-2018), the largest being in Java. Hence, this study aims to examine the impact of urban expansion on agricultural land in the north coast region of West Java Province from 2013 to 2020 and develop a predictive model for 2030 to support sustainable land use planning. The primary methods employed were random forest (RF) analysis using Google Earth Engine, intensity analysis, multilayer perceptron-neural network (MLP-NN), Markov chains-cellular automata (Markov-CA), and stakeholder interviews. The model also evaluated the influence of "distance to tollgates" as a previously unexplored driving factor in existing land use modeling studies. Landsat image classification results using the RF algorithm showed 87-88% accuracy. Cropland has historically been and is projected to remain the primary target for the expansion of built-up areas. Spatial planning irregularities were found in the growth of these areas that adversely affected farmers' socioeconomic and environmental conditions. Evaluation of land use models using MLP-NN and Markov-CA demonstrated an accuracy rate of 86.29-86.23%. The distance to tollgates factor significantly impacts the models, albeit less than population density. The 2030 intervention scenario, which implements a firm policy for sustainable agricultural land use, offers the potential to maintain the predicted cropland loss compared to business as usual.


Subject(s)
Agriculture , Conservation of Natural Resources , Indonesia , Environmental Monitoring/methods , Urban Renewal , Urbanization , Sustainable Development , Humans
2.
Geospat Health ; 17(s1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35147009

ABSTRACT

With 25% confirmed cases of the country's total number of coronavirus disease 2019 (COVID-19) on 31 January 2021, Jakarta has the highest confirmed cases of in Indonesia. The city holds a significant role as the centre of government and national economic activity for which pandemic have had a huge impact. Spatiotemporal analysis was employed to identify the current condition of disease transmission and to provide comprehensive information on the COVID-19 outbreak in Jakarta. We applied space-time analysis to visualise the pattern of COVID-19 hotspots in each time series. We also mapped area capacity of the referral hospitals covering the entire area of Jakarta to understand the hospital service range. This research was conducted in 4 stages: i) disease mapping; ii) spatial autocorrelation analysis; iii) space-time pattern analysis; and iv) areal capacity mapping. The analysis resulted in 144 sub-districts categorised as high vulnerability. Autocorrelation studies by Moran's I identified cluster patterns and the emerging hotspot results indicated successful interventions as the number of hotspots fell in the first period of social restrictions. The results presented should be beneficial for policy makers.


Subject(s)
COVID-19 , Pandemics , Humans , Indonesia/epidemiology , SARS-CoV-2 , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...