Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 112(2): 238-248, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34156264

ABSTRACT

Basal stem rot (BSR) is the most common disease of oil palm (Elaeis guineensis) in Southeast Asia. BSR is caused by a white-rot fungus Ganoderma boninense. The disease is difficult to manage. Therefore, development of novel and environmentally safe approaches to control the disease is important. Species of Burkholderia are known to have diverse lifestyles, some of which can benefit plants by suppressing diseases or increasing plant growth. In the present study, antifungal peptides produced by a bacterial strain isolated from the rhizosphere of an oil palm tree, Burkholderia sp. strain CP01, exhibited strong growth inhibition on G. boninense. A loss-of-function mutant of CP01 was generated, and it has enabled the identification of a 1.2-kDa peptide and its variants as the active antifungal compounds. High-resolution mass spectrometry revealed six analogous compounds with monoisotopic masses similar to the previously reported cyclic lipopeptides occidiofungin and burkholdine. The antifungal compounds of CP01 were secreted into media, and we sought to use CP01 culture extract without living cells to control BSR disease. Glasshouse experiments showed that CP01 culture extract suppressed BSR disease in oil palm seedlings. The ability of CP01 to produce an antifungal substance and suppress plant disease suggests its potential applications as a biofungicide in agriculture.


Subject(s)
Arecaceae , Burkholderia , Ganoderma , Antifungal Agents/pharmacology , Arecaceae/microbiology , Ganoderma/physiology , Lipopeptides , Plant Diseases/microbiology
2.
Mycorrhiza ; 28(5-6): 495-507, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29948410

ABSTRACT

Mycorrhizal symbiosis requires several common symbiosis genes including CYCLOPS/IPD3. The reduced mycorrhizal colonisation (rmc) tomato mutant has a deletion of five genes including CYCLOPS/IPD3, and rmc is more susceptible to Fusarium wilt than its wild-type parental line. This study investigated the genetic defects leading to both fungal interaction phenotypes and whether these were separable. Complementation was performed in rmc to test the requirement for CYCLOPS/IPD3 in mycorrhiza formation and Fusarium wilt tolerance. Promoter analysis via GFP expression in roots was conducted to determine the role of native regulatory elements in the proper functioning of CYCLOPS/IPD3. CYCLOPS/IPD3 regulated by its native promoter, but not a 2×35S promoter, restores mycorrhizal association in rmc. GFP regulated by the 2×35S promoter is not expressed in epidermal cells of roots, indicating that expression of CYCLOPS/IPD3 in these cells is required for colonisation by the fungi utilised in this research. CYCLOPS/IPD3 did not restore Fusarium wilt tolerance, however, showing that the genetic requirements for mycorrhizal association and Fusarium wilt tolerance are different. Our results confirm the expected role of CYCLOPS/IPD3 in mycorrhizal symbiosis and suggest that Fusarium tolerance is conferred by one of the other four genes affected by the deletion.


Subject(s)
Mutation , Plant Diseases/microbiology , Plant Proteins/genetics , Solanum lycopersicum/genetics , Disease Resistance , Fusarium/pathogenicity , Gene Deletion , Genetic Complementation Test , Solanum lycopersicum/microbiology , Mycorrhizae , Plant Roots/genetics , Plant Roots/microbiology , Promoter Regions, Genetic , Symbiosis
3.
Front Microbiol ; 9: 1226, 2018.
Article in English | MEDLINE | ID: mdl-29937759

ABSTRACT

The reduced mycorrhizal colonization (rmc) tomato mutant is unable to form mycorrhiza and is more susceptible to Fusarium wilt compared with its wild-type isogenic line 76R. The rmc mutant has a chromosomal deletion affecting five genes, one of which is similar to CYCLOPS. Loss of this gene is responsible for non-mycorrhizality in rmc but not enhanced Fusarium wilt susceptibility. Here, we describe assessment of a second gene in the rmc deletion, designated Solyc08g075770 that is expressed in roots. Sequence analyses show that Solyc08g075770 encodes a small transmembrane protein with putative phosphorylation and glycosylation sites. It is predicted to be localized in the plasma membrane and may function in transmembrane ion transport and/or as a cell surface receptor. Complementation and knock-out strategies were used to test its function. Some putative CRISPR/Cas-9 knock-out transgenic events exhibited Fusarium wilt susceptibility like rmc and some putative complementation lines were 76R-like, suggesting that the tomato Solyc08g075770 functions in Fusarium wilt tolerance. This is the first study to demonstrate that Solyc08g075770 is the contributor to the Tfw locus, conferring tolerance to Fusarium wilt in 76R which was lost in rmc.

SELECTION OF CITATIONS
SEARCH DETAIL
...