Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648766

ABSTRACT

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Subject(s)
Catalytic Domain , HIV Integrase , HIV-1 , Reverse Transcription , Virus Integration , HIV Integrase/metabolism , HIV Integrase/chemistry , HIV Integrase/genetics , HIV-1/enzymology , Humans
2.
Biochimie ; 222: 9-17, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38373651

ABSTRACT

The cellular SFPQ protein is involved in several stages of the HIV-1 life cycle, but the detailed mechanism of its involvement is not yet fully understood. Here, the role of SFPQ in the early stages of HIV-1 replication has been studied. It is found that changes in the intracellular level of SFPQ affect the integration of viral DNA, but not reverse transcription, and SFPQ is a positive factor of integration. A study of the SFPQ interaction with HIV-1 integrase (IN) has revealed two diRGGX1-4 motifs in the N-terminal region of SFPQ, which are involved in IN binding. Substitution of a single amino acid residue in any of these regions led to a decrease in binding efficiency, while mutations in both motifs almost completely disrupted the SFPQ interaction with IN. The effect of the SFPQ mutants with impaired ability to bind IN on viral replication has been analyzed. Unlike the wild-type protein, the SFPQ mutants did not affect viral integration. This confirms that SFPQ influences the integration stage through direct interaction with IN. Our results indicate that the SFPQ/IN complex can be considered as a potential therapeutic target for the development of new inhibitors of HIV replication.


Subject(s)
HIV Integrase , HIV-1 , PTB-Associated Splicing Factor , Virus Integration , Virus Replication , HIV-1/metabolism , HIV-1/physiology , HIV-1/genetics , Humans , HIV Integrase/metabolism , HIV Integrase/genetics , PTB-Associated Splicing Factor/metabolism , PTB-Associated Splicing Factor/genetics , Protein Binding , Mutation , HEK293 Cells
3.
Biomedicines ; 11(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37509423

ABSTRACT

Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.

4.
Nucleic Acids Res ; 50(2): 1111-1127, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35018467

ABSTRACT

eIF4G2 (DAP5 or Nat1) is a homologue of the canonical translation initiation factor eIF4G1 in higher eukaryotes but its function remains poorly understood. Unlike eIF4G1, eIF4G2 does not interact with the cap-binding protein eIF4E and is believed to drive translation under stress when eIF4E activity is impaired. Here, we show that eIF4G2 operates under normal conditions as well and promotes scanning downstream of the eIF4G1-mediated 40S recruitment and cap-proximal scanning. Specifically, eIF4G2 facilitates leaky scanning for a subset of mRNAs. Apparently, eIF4G2 replaces eIF4G1 during scanning of 5' UTR and the necessity for eIF4G2 only arises when eIF4G1 dissociates from the scanning complex. In particular, this event can occur when the leaky scanning complexes interfere with initiating or elongating 80S ribosomes within a translated uORF. This mechanism is therefore crucial for higher eukaryotes which are known to have long 5' UTRs with highly frequent uORFs. We suggest that uORFs are not the only obstacle on the way of scanning complexes towards the main start codon, because certain eIF4G2 mRNA targets lack uORF(s). Thus, higher eukaryotes possess two distinct scanning complexes: the principal one that binds mRNA and initiates scanning, and the accessory one that rescues scanning when the former fails.


Subject(s)
Eukaryotic Initiation Factor-4G/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , Humans , Open Reading Frames , Protein Biosynthesis
5.
J Cell Biol ; 220(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34328499

ABSTRACT

Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.


Subject(s)
Anisotropy , Bile Canaliculi/metabolism , Cell Membrane/metabolism , Hepatocytes/metabolism , Animals , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organogenesis , Pregnancy
6.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203429

ABSTRACT

DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo-deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60-65%) showed discordant results in vitro and in vivo-similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.


Subject(s)
DEAD-box RNA Helicases/metabolism , Hepatocytes/metabolism , Animals , Cell Survival/genetics , Cell Survival/physiology , DEAD-box RNA Helicases/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Liver/metabolism , Mice , Mice, Inbred BALB C , Transcriptome/genetics
7.
Cell Death Dis ; 12(5): 421, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927191

ABSTRACT

Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.


Subject(s)
Chemokine CCL2/metabolism , Leukocytes/metabolism , Liver Cirrhosis/metabolism , Transcription Factors/metabolism , Animals , Humans , Leukocytes/pathology , Liver Cirrhosis/pathology , Male , Mice , Mice, Knockout
8.
Cancers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35008345

ABSTRACT

BH3 mimetics represent a promising tool in cancer treatment. Recently, the drugs targeting the Mcl-1 protein progressed into clinical trials, and numerous studies are focused on the investigation of their activity in various preclinical models. We investigated two BH3 mimetics to Mcl-1, A1210477 and S63845, and found their different efficacies in on-target doses, despite the fact that both agents interacted with the target. Thus, S63845 induced apoptosis more effectively through a Bak-dependent mechanism. There was an increase in the level of Bcl-xL protein in cells with acquired resistance to Mcl-1 inhibition. Cell lines sensitive to S63845 demonstrated low expression of Bcl-xL. Tumor tissues from patients with lung adenocarcinoma were characterized by decreased Bcl-xL and increased Bak levels of both mRNA and proteins. Concomitant inhibition of Bcl-xL and Mcl-1 demonstrated dramatic cytotoxicity in six of seven studied cell lines. We proposed that co-targeting Bcl-xL and Mcl-1 might lead to a release of Bak, which cannot be neutralized by other anti-apoptotic proteins. Surprisingly, in Bak-knockout cells, inhibition of Mcl-1 and Bcl-xL still resulted in pronounced cell death, arguing against a sole role of Bak in the studied phenomenon. We demonstrate that Bak and Bcl-xL are co-factors for, respectively, sensitivity and resistance to Mcl-1 inhibition.

9.
Front Cell Dev Biol ; 8: 543066, 2020.
Article in English | MEDLINE | ID: mdl-33072738

ABSTRACT

As an important regulator of apoptosis, Mcl-1 protein, a member of the Bcl-2 family, represents an attractive target for cancer treatment. The recent development of novel small molecule compounds has allowed Mcl-1-inhibitory therapy to proceed to clinical trials in cancer treatment. However, the possible adverse effects of either direct inhibition of Mcl-1 or upregulation of Mcl-1S, proapoptotic isoform resulting from alternative splicing of Mcl-1, remain unclear. Here, we investigated changes in Mcl-1S levels during cell cycle and the cell cycle-related functions of Mcl-1 isoforms to address the above-mentioned concerns. It was shown that an anti-mitotic agent monastrol caused accumulation of Mcl-1S mRNA, although without increasing the protein level. In contrast, both mRNA and protein levels of Mcl-1S accrued during the premitotic stages of the normal cell cycle progression. Importantly, Mcl-1S was observed in the nuclear compartment and an overexpression of Mcl-1S, as well as knockdown of Mcl-1, accelerated the progression of cells into mitosis and resulted in DNA damage accumulation. Surprisingly, a small molecule inhibitor of Mcl-1, BH3-mimetic S63845, did not affect the cell cycle progression or the amount of DNA damage. In general, upregulated Mcl-1S protein or genetically inhibited Mcl-1L were associated with the cell cycle perturbations and DNA damage accumulation in normal and cancer cells. At the same time, BH3-mimetic to Mcl-1 did not affect the cell cycle progression, suggesting that direct inhibition of Mcl-1 is devoid of cell-cycle related undesired effects.

10.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764370

ABSTRACT

The coupling of alternative splicing with the nonsense-mediated decay (NMD) pathway maintains quality control of the transcriptome in eukaryotes by eliminating transcripts with premature termination codons (PTC) and fine-tunes gene expression. Long noncoding RNA (lncRNA) can regulate multiple cellular processes, including alternative splicing. Previously, murine Morrbid (myeloid RNA repressor of Bcl2l11 induced death) lncRNA was described as a locus-specific controller of the lifespan of short-living myeloid cells via transcription regulation of the apoptosis-related Bcl2l11 protein. Here, we report that murine Morrbid lncRNA in hepatocytes participates in the regulation of proto-oncogene NRAS (neuroblastoma RAS viral oncogene homolog) splicing, including the formation of the isoform with PTC. We observed a significant increase of the NRAS isoform with PTC in hepatocytes with depleted Morrbid lncRNA. We demonstrated that the NRAS isoform with PTC is degraded via the NMD pathway. This transcript is presented almost only in the nucleus and has a half-life ~four times lower than other NRAS transcripts. Additionally, in UPF1 knockdown hepatocytes (the key NMD factor), we observed a significant increase of the NRAS isoform with PTC. By a modified capture hybridization (CHART) analysis of the protein targets, we uncovered interactions of Morrbid lncRNA with the SFPQ (splicing factor proline and glutamine rich)-NONO (non-POU domain-containing octamer-binding protein) splicing complex. Finally, we propose the regulation mechanism of NRAS splicing in murine hepatocytes by alternative splicing coupled with the NMD pathway with the input of Morrbid lncRNA.


Subject(s)
Alternative Splicing/genetics , DNA-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/genetics , PTB-Associated Splicing Factor/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Animals , Codon, Nonsense/genetics , Gene Expression Regulation, Developmental , Hepatocytes/metabolism , Mice , Multiprotein Complexes/genetics , Nonsense Mediated mRNA Decay/genetics , Transcriptome/genetics
11.
Cells ; 9(4)2020 04 24.
Article in English | MEDLINE | ID: mdl-32344536

ABSTRACT

Ribosome biogenesis is among the founding processes in the cell. During the first stages of ribosome biogenesis, polycistronic precursor of ribosomal RNA passes complex multistage maturation after transcription. Quality control of preribosomal RNA (pre-rRNA) processing is precisely regulated by non-ribosomal proteins and structural features of pre-rRNA molecules, including modified nucleotides. However, many participants of rRNA maturation are still unknown or poorly characterized. We report that RNA m6A methyltransferase Mettl3 interacts with the 5' external transcribed spacer (5'ETS) of the 47S rRNA precursor and modifies adenosine 196. We demonstrated that Mettl3 knockdown results in the increase of pre-rRNA processing rates, while intracellular amounts of rRNA processing machinery components (U3, U8, U13, U14, and U17 small nucleolar RNA (snoRNA)and fibrillarin, nucleolin, Xrn2, and rrp9 proteins), rRNA degradation rates, and total amount of mature rRNA in the cell stay unchanged. Increased efficacy of pre-rRNA cleavage at A' and A0 positions led to the decrease of 47S and 45S pre-rRNAs in the cell and increase of mature rRNA amount in the cytoplasm. The newly identified conserved motif DRACH sequence modified by Mettl3 in the 5'-ETS region is found and conserved only in primates, which may suggest participation of m6A196 in quality control of pre-rRNA processing at initial stages demanded by increased complexity of ribosome biogenesis.


Subject(s)
Adenosine/metabolism , DNA, Intergenic/genetics , Methyltransferases/metabolism , RNA Precursors/metabolism , RNA, Ribosomal/metabolism , Base Sequence , HEK293 Cells , Humans , Lipids/chemistry , Nanoparticles/chemistry , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA Processing, Post-Transcriptional/genetics , RNA, Ribosomal/chemistry , RNA, Small Interfering/metabolism
12.
Mol Ther ; 28(4): 1092-1104, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32087767

ABSTRACT

The N-degron pathway is an emerging target for anti-tumor therapies, because of its capacity to positively regulate many hallmarks of cancer, including angiogenesis, cell proliferation, motility, and survival. Thus, inhibition of the N-degron pathway offers the potential to be a highly effective anti-cancer treatment. With the use of a small interfering RNA (siRNA)-mediated approach for selective downregulation of the four Arg/N-degron-dependent ubiquitin ligases, UBR1, UBR2, UBR4, and UBR5, we demonstrated decreased cell migration and proliferation and increased spontaneous apoptosis in cancer cells. Chronic treatment with lipid nanoparticles (LNPs) loaded with siRNA in mice efficiently downregulates the expression of UBR-ubiquitin ligases in the liver without any significant toxic effects but engages the immune system and causes inflammation. However, when used in a lower dose, in combination with a chemotherapeutic drug, downregulation of the Arg/N-degron pathway E3 ligases successfully reduced tumor load by decreasing proliferation and increasing apoptosis in a mouse model of hepatocellular carcinoma, while avoiding the inflammatory response. Our study demonstrates that UBR-ubiquitin ligases of the Arg/N-degron pathway are promising targets for the development of improved therapies for many cancer types.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Down-Regulation , Doxorubicin/administration & dosage , Liver Neoplasms/drug therapy , RNA, Small Interfering/administration & dosage , Ubiquitin-Protein Ligases/genetics , Animals , Calmodulin-Binding Proteins/antagonists & inhibitors , Calmodulin-Binding Proteins/genetics , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Liposomes , Liver Neoplasms/genetics , Mice , Nanoparticles , RNA, Small Interfering/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Xenograft Model Antitumor Assays
13.
Talanta ; 194: 226-232, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30609524

ABSTRACT

Nucleic acids labeled with a fluorophore/quencher pair are widely used as probes in biomedical research and molecular diagnostics. Here we synthesized novel DNA molecular beacons double labeled with the identical dyes (R6G, ROX and Cy5) at 5'- and 3'-end and studied their photo physical properties. We demonstrated that fluorescence quenching by formation of the homo dimer exciton in such molecular beacons allows using them in homogeneous assays. Further, we developed and evaluated homo Yin-Yang DNA probes labeled with identical dyes and used them for detection of low copy HIV RNA by RT-qPCR. They demonstrated improved sensitivity (LLQ: 10 vs 30 copies mL-1) in comparison to commercially available Abbott RealTime HIV-1 kit based on VIC-BHQ dyes both for model mixtures (naive human plasma with added deactivated HIV-1 virus) and for preliminarily confirmed 36 clinical samples (4 vs 1 positive ones for low-copy samples).


Subject(s)
DNA Probes/genetics , HIV-1/genetics , Limit of Detection , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Base Sequence , DNA Probes/chemistry , Models, Molecular , Nucleic Acid Conformation
14.
Bioconjug Chem ; 28(10): 2599-2607, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28921968

ABSTRACT

We developed a novel technique for the efficient conjugation of oligonucleotides with various alkyl azides such as fluorescent dyes, biotin, cholesterol, N-acetylgalactosamine (GalNAc), etc. using copper-catalysed alkyne-azide cycloaddition on the solid phase and CuI·P(OEt)3 as a catalyst. Conjugation is carried out in an oligonucleotide synthesizer in fully automated mode and is coupled to oligonucleotide synthesis and on-column deprotection. We also suggest a set of reagents for the construction of diverse conjugates. The sequential double-click procedure using a pentaerythritol-derived tetraazide followed by the addition of a GalNAc or Tris-GalNAc alkyne gives oligonucleotide-GalNAc dendrimer conjugates in good yields with minimal excess of sophisticated alkyne reagents. The approach is suitable for high-throughput synthesis of oligonucleotide conjugates ranging from fluorescent DNA probes to various multi-GalNAc derivatives of 2'-modified siRNA.


Subject(s)
Acetylgalactosamine/chemistry , Oligonucleotides/chemistry , Oligonucleotides/chemical synthesis , Alkynes/chemistry , Automation , Azides/chemistry , Click Chemistry , Cycloaddition Reaction , Solid-Phase Synthesis Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...