Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Exp Zool A Ecol Integr Physiol ; 337(1): 24-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34752686

ABSTRACT

Estrogenic signaling is an important focus in studies of gonadal and brain sexual differentiation in fishes and vertebrates generally. This study examined variation in estrogenic signaling (1) across three sexual phenotypes (female, female-mimic initial phase [IP] male, and terminal phase [TP] male), (2) during socially-controlled female-to-male sex change, and (3) during tidally-driven spawning cycles in the protogynous bluehead wrasse (Thalassoma bifasciatum). We analyzed relative abundances of messenger RNAs (mRNAs) for the brain form of aromatase (cyp19a1b) and the three nuclear estrogen receptors (ER) (ERα, ERßa, and ERßb) by qPCR. Consistent with previous reports, forebrain/midbrain cyp19a1b was highest in females, significantly lower in TP males, and lowest in IP males. By contrast, ERα and ERßb mRNA abundances were highest in TP males and increased during sex change. ERßa mRNA did not vary significantly. Across the tidally-driven spawning cycle, cyp19a1b abundances were higher in females than TP males. Interestingly, cyp19a1b levels were higher in TP males close (~1 h) to the daily spawning period when sexual and aggressive behaviors rise than males far from spawning (~10-12 h). Together with earlier findings, our results suggest alterations in neural estrogen signaling are key regulators of socially-controlled sex change and sexual phenotype differences. Additionally, these patterns suggest TP male-typical sociosexual behaviors may depend on intermediate rather than low estrogenic signaling. We discuss these results and the possibility that an inverted-U shaped relationship between neural estrogen and male-typical behaviors is more common than presently appreciated.


Subject(s)
Perciformes , Animals , Female , Fishes , Gonads , Male , Sex Determination Processes , Sex Differentiation
2.
Concussion ; 6(1): CNC88, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33976903

ABSTRACT

BACKGROUND: Guidelines for clinicians treating military concussion recommend exertional testing before return-to-duty, yet there is currently no standardized task or inclusion of an objective physiological measure like heart rate variability (HRV). METHODOLOGY & RESULTS: We pilot-tested two clinically feasible exertional tasks that include HRV measures and examined reliability of a commercially available heart rate monitor. Testing healthy participants confirmed that the 6-min step test and 2-min pushup test evoked the targeted physiological response, and the Polar H10 was reliable to the gold-standard electrocardiogram. CONCLUSION: Both tasks are brief assessments that can be implemented into primary care setting including the Polar H10 as an affordable way to access HRV. Additional research utilizing these tasks to evaluate concussion recovery can validate standardized exertional tasks for clinical use.

3.
J Pain Res ; 12: 3265-3277, 2019.
Article in English | MEDLINE | ID: mdl-31849514

ABSTRACT

BACKGROUND: Chronic low back pain (CLBP) is characterized by an alteration in pain processing by the central nervous system that may affect autonomic nervous system (ANS) balance. Heart rate variability (HRV) reflects the balance of parasympathetic and sympathetic ANS activation. In particular, respiratory sinus arrhythmia (RSA) solely reflects parasympathetic input and is reduced in CLBP patients. Yet, it remains unknown if non-invasive brain stimulation can alter ANS balance in CLBP patients. OBJECTIVE: To evaluate if non-invasive brain stimulation modulates the ANS, we analyzed HRV metrics collected in a previously published study of transcranial alternating current stimulation (tACS) for the modulation of CLBP through enhancing alpha oscillations. We hypothesized that tACS would increase RSA. METHODS: A randomized, crossover, double-blind, sham-controlled pilot study was conducted to investigate the effects of 10Hz-tACS on metrics of ANS balance calculated from electrocardiogram (ECG). ECG data were collected for 2 mins before and after 40 mins of 10Hz-tACS or sham stimulation. RESULTS: There were no significant changes in RSA or other frequency-domain HRV components from 10Hz-tACS. However, exploratory time-domain HRV analyses revealed a significant increase in the standard deviation of normal intervals between R-peaks (SDNN), a measure of ANS balance, for 10Hz-tACS relative to sham. CONCLUSION: Although tACS did not significantly increase RSA, we found in an exploratory analysis that tACS modulated an integrated HRV measure of both ANS branches. These findings support the further study of how the ANS and alpha oscillations interact and are modulated by tACS. CLINICALTRIALSGOV: Transcranial Alternating Current Stimulation in Back Pain - Pilot Study, NCT03243084.

4.
Mil Med ; 184(5-6): e268-e277, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30690450

ABSTRACT

INTRODUCTION: The Assessment of Military Multitasking Performance (AMMP1) consists of six dual-task and multitask military-relevant performance-based assessments which were developed to provide assistance in making return-to-duty decisions after concussion or mild traumatic brain injury (mTBI.) The Run-Roll-Aim (RRA) task, one component of the AMMP, was developed to target vulnerabilities following mTBI including attention, visual function, dynamic stability, rapid transition, and vestibular function. One aim of this study was to assess the known-group and construct validity of the RRA, and additionally to further explore reliability limitations reported previously. MATERIALS AND METHODS: A cross-sectional study consisting of 84 Active Duty service members in two groups (healthy control - HC and individuals experiencing persistent mTBI symptoms) completed neurocognitive tests and the RRA. The RRA task requires a high level of mobility and resembles military training activities in a maneuver that includes combat rolls, fast transitions, obstacle avoidance, and visual search. Observational and inertial sensor data were compared between groups and performance across four trial times was compared within groups. Correlations between RRA results and neurocognitive test scores were analyzed. RESULTS: Simple observational measures (time, errors) did not differ between groups. Spectral power analysis of the inertial sensor data showed significant differences in motor performance between groups. Within group one-way ANOVAs showed that in HC trial 1, time was significantly different than trials 2,3 and 4 (F(3,47) = 4.60, p < 0.01, Tukey HSD p < 0.05) while the mTBI group showed no significant difference in time between trials. During testing individuals with mTBI were less likely to complete the multiple test trials or required additional rest between trials than HCs (χ2 = 10.78, p < 0.01). Small but significant correlations were seen with two neurocognitive tests of attention and RRA performance time. CONCLUSION: While observational scores were not sensitive to group differences, inertial sensor data showed motor performance on the forward run, combat roll, and backward run differed significantly between groups. The RRA task appeared challenging and provoked symptoms in the mTBI group, causing 8 of 33 mTBI participants to stop the task or require additional rest between trials while none of the HC participants had to stop. Individuals with mTBI demonstrated slower learning of the complex motor sequence compared to HCs who had significant improvement after one trial of RRA. Complex novel training maneuvers like RRA may aid clinicians in informing return to duty decisions.


Subject(s)
Decision Support Techniques , Disability Evaluation , Military Personnel/statistics & numerical data , Return to Work/statistics & numerical data , Adolescent , Adult , Analysis of Variance , Cross-Sectional Studies , Female , Humans , Male , Reproducibility of Results
5.
J Pain ; 20(3): 277.e1-277.e11, 2019 03.
Article in English | MEDLINE | ID: mdl-30268803

ABSTRACT

Chronic pain is associated with maladaptive reorganization of the central nervous system. Recent studies have suggested that disorganization of large-scale electrical brain activity patterns, such as neuronal network oscillations in the thalamocortical system, plays a key role in the pathophysiology of chronic pain. Yet, little is known about whether and how such network pathologies can be targeted with noninvasive brain stimulation as a nonpharmacological treatment option. We hypothesized that alpha oscillations, a prominent thalamocortical activity pattern in the human brain, are impaired in chronic pain and can be modulated with transcranial alternating current stimulation (tACS). We performed a randomized, crossover, double-blind, sham-controlled study in patients with chronic low back pain (CLBP) to investigate how alpha oscillations relate to pain symptoms for target identification and whether tACS can engage this target and thereby induce pain relief. We used high-density electroencephalography to measure alpha oscillations and found that the oscillation strength in the somatosensory region at baseline before stimulation was negatively correlated with pain symptoms. Stimulation with alpha-tACS compared to sham (placebo) stimulation significantly enhanced alpha oscillations in the somatosensory region. The stimulation-induced increase of alpha oscillations in the somatosensory region was correlated with pain relief. Given these findings of successful target identification and engagement, we propose that modulating alpha oscillations with tACS may represent a target-specific, nonpharmacological treatment approach for CLBP. This trial has been registered in ClinicalTrials.gov (NCT03243084). PERSPECTIVE: This study suggests that a rational design of transcranial alternating current stimulation, which is target identification, engagement, and validation, could be a nonpharmacological treatment approach for patients with CLBP.


Subject(s)
Alpha Rhythm/physiology , Chronic Pain/physiopathology , Chronic Pain/therapy , Low Back Pain/physiopathology , Low Back Pain/therapy , Outcome and Process Assessment, Health Care , Somatosensory Cortex/physiopathology , Transcranial Direct Current Stimulation/methods , Adolescent , Adult , Aged , Cross-Over Studies , Double-Blind Method , Electroencephalography , Female , Humans , Male , Middle Aged , Placebos , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...