Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Neuroimaging ; 25(6): 875-82, 2015.
Article in English | MEDLINE | ID: mdl-26259925

ABSTRACT

BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging/standards , Image Processing, Computer-Assisted/standards , Neurosurgical Procedures/standards , Pyramidal Tracts/diagnostic imaging , Algorithms , Brain/pathology , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Diffusion Tensor Imaging/methods , Glioma/diagnostic imaging , Glioma/pathology , Glioma/surgery , Humans , Image Processing, Computer-Assisted/methods , Neurosurgical Procedures/methods , Pyramidal Tracts/pathology , Pyramidal Tracts/surgery , Reference Standards , White Matter/diagnostic imaging , White Matter/pathology , White Matter/surgery
2.
J Hum Evol ; 76: 116-28, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25042287

ABSTRACT

The study of brain structural asymmetries as anatomical substrates of functional asymmetries in extant humans, great apes, and fossil hominins is of major importance in understanding the structural basis of modern human cognition. We propose methods to quantify the variation in size, shape and bilateral asymmetries of the third frontal convolution (or posterior inferior frontal gyrus) among recent modern humans, bonobos and chimpanzees, and fossil hominins using actual and virtual endocasts. These methodological improvements are necessary to extend previous qualitative studies of these features. We demonstrate both an absolute and relative bilateral increase in the size of the third frontal convolution in width and length between Pan species, as well as in hominins. We also observed a global bilateral increase in the size of the third frontal convolution across all species during hominin evolution, but also non-allometric intra-group variations independent of brain size within the fossil samples. Finally, our results show that the commonly accepted leftward asymmetry of Broca's cap is biased by qualitative observation of individual specimens. The trend during hominin evolution seems to be a reduction in size on the left compared with the right side, and also a clearer definition of the area. The third frontal convolution considered as a whole projects more laterally and antero-posteriorly in the right hemisphere. As a result, the left 'Broca's cap' looks more globular and better defined. Our results also suggest that the pattern of brain asymmetries is similar between Pan paniscus and hominins, leaving the gradient of the degree of asymmetry as the only relevant structural parameter. As the anatomical substrate related to brain asymmetry has been present since the appearance of the hominin lineage, it is not possible to prove a direct relationship between the extent of variations in the size, shape, and asymmetries of the third frontal convolution and the origin of language in hominins.


Subject(s)
Biological Evolution , Broca Area/anatomy & histology , Fossils/anatomy & histology , Hominidae/anatomy & histology , Animals , Language
3.
Surg Radiol Anat ; 36(2): 111-24, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23807198

ABSTRACT

PURPOSE: Cerebral hemispheres represent both structural and functional asymmetry, which differs among right- and left-handers. The left hemisphere is specialised for language and task execution of the right hand in right-handers. We studied the corticospinal tract in right- and left-handers by diffusion tensor imaging and tractography. The present study aimed at revealing a morphological difference resulting from a region of interest (ROI) obtained by functional MRI (fMRI). METHODS: Twenty-five healthy participants (right-handed: 15, left-handed: 10) were enrolled in our assessment of morphological, functional and diffusion tensor MRI. Assessment of brain fibre reconstruction (tractography) was done using a deterministic algorithm. Fractional anisotropy (FA) and mean diffusivity (MD) were studied on the tractography traces of the reference slices. RESULTS: We observed a significant difference in number of leftward fibres based on laterality. The significant difference in regard to FA and MD was based on the slices obtained at different levels and the laterality index. We found left-hand asymmetry and right-hand asymmetry, respectively, for the MD and FA. CONCLUSIONS: Our study showed the presence of hemispheric asymmetry based on laterality index in right- and left-handers. These results are inconsistent with some studies and consistent with others. The reported difference in hemispheric asymmetry could be related to dexterity (manual skill).


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Functional Laterality/physiology , Pyramidal Tracts/anatomy & histology , Adolescent , Adult , Algorithms , Female , Humans , Magnetic Resonance Imaging/methods , Male , Reference Values , Young Adult
4.
Surg Radiol Anat ; 34(8): 709-19, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22427107

ABSTRACT

PURPOSE: Diffusion tensor imaging permits study of white matter fibre bundles; however, its main limitation is lack of validation on anatomical data, especially in crossing fibre regions. Our study aimed to compare four deterministic tractography algorithms used in clinical routine. We studied the corticospinal tract, the bundle mediating voluntary movement. Our study seeks to evaluate tractography provided by algorithms through comparative analysis by expert neuroradiologists. METHODS: MRI data from 15 right-handed volunteers (30.8 years) were studied. Regions of interest (ROIs) were segmented on morphological and functional MRI. Diffusion weighted images (15 directions) were performed, then for each voxel the tensor was estimated. Tractography of the corticospinal tract was performed using four fibre-tracking algorithms. Three numerical integration methods Euler, Runge-Kutta second (RK2) and fourth order (RK4), and a tensor deflection method (TEND). Quantitative measurement was performed. Qualitative evaluation was carried out by two expert neuroradiologists using Kappa test concordance. RESULTS: For the quantitative aspect, only RK2 and TEND presented no significant difference concerning the number of fibres (p = 0.58). There was no difference between right and left side for each algorithm. Regarding the qualitative aspects, there was a lack of fibres from the ventrolateral part of the functional ROIs. Comparison by expert neuroradiologists revealed low rather than high concordance. The algorithm ranked first was RK2 according to expert preferences. CONCLUSIONS: Different algorithms used in clinical routine failed to show realistic anatomical bundles. The most mathematically robust algorithm was not selected, nor was the algorithm defining more fibres. Validation of anatomical data provided by tractography remains a challenge.


Subject(s)
Algorithms , Diffusion Tensor Imaging/methods , Pyramidal Tracts/anatomy & histology , Adult , Echo-Planar Imaging/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Reference Values , Young Adult
5.
Med Image Comput Comput Assist Interv ; 15(Pt 2): 163-70, 2012.
Article in English | MEDLINE | ID: mdl-23286045

ABSTRACT

We propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic demons method on dynamic cervical MRI data.


Subject(s)
Anatomic Landmarks , Cervical Vertebrae/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Spinal Cord Injuries/pathology , Subtraction Technique , Algorithms , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
6.
IEEE Trans Med Imaging ; 30(8): 1455-67, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21324773

ABSTRACT

We present a new automatic method for segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. The method performs tissue classification using a model of intensities of the normal appearing brain tissues. In order to estimate the model, a trimmed likelihood estimator is initialized with a hierarchical random approach in order to be robust to MS lesions and other outliers present in real images. The algorithm is first evaluated with simulated images to assess the importance of the robust estimator in presence of outliers. The method is then validated using clinical data in which MS lesions were delineated manually by several experts. Our method obtains an average Dice similarity coefficient (DSC) of 0.65, which is close to the average DSC obtained by raters (0.66).


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Brain/pathology , Computer Simulation , Humans , Normal Distribution , Reproducibility of Results
7.
Med Image Comput Comput Assist Interv ; 13(Pt 2): 594-601, 2010.
Article in English | MEDLINE | ID: mdl-20879364

ABSTRACT

In this paper, we present a new algorithm for non-linear registration of point sets. We estimate both forward and backward deformations fields best superposing the two point sets of interest and we make sure that they are consistent with each other by designing a symmetric cost function where they are coupled. Regularisation terms are included in this cost function to enforce deformation smoothness. Then we present a two-step iterative algorithm to optimise this cost function, where the two fields and the fuzzy matches between the two sets are estimated in turn. Building regularisers using the RKHS theory allows to obtain fast and efficient closed-form solutions for the optimal fields. The resulting algorithm is efficient and can deal with large point sets.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Subtraction Technique , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
8.
Med Image Comput Comput Assist Interv ; 12(Pt 2): 175-83, 2009.
Article in English | MEDLINE | ID: mdl-20426110

ABSTRACT

We show that a simple probabilistic modelling of the registration problem for surfaces allows to solve it by using standard clustering techniques. In this framework, point-to-point correspondences are hypothesized between the two free-form surfaces, and we show how to specify priors and to enforce global constraints on these matches with only minor changes to the optimisation algorithm. The purpose of these two modifications is to increase its capture range and to obtain more realistic geometrical transformations between the surfaces. We conclude with some validation experiments and results on synthetic and real data.


Subject(s)
Algorithms , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
9.
Article in English | MEDLINE | ID: mdl-18979727

ABSTRACT

In this paper, we propose a set of new generic automated processing tools to characterise the local asymmetries of anatomical structures (represented by surfaces) at an individual level, and within/between populations. The building bricks of this toolbox are: (1) a new algorithm for robust, accurate, and fast estimation of the symmetry plane of grossly symmetrical surfaces, and (2) a new algorithm for the fast, dense, nonlinear matching of surfaces. This last algorithm is used both to compute dense individual asymmetry maps on surfaces, and to register these maps to a common template for population studies. We show these two algorithms to be mathematically well-grounded, and provide some validation experiments. Then we propose a pipeline for the statistical evaluation of local asymmetries within and between populations. Finally we present some results on real data.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Humans , Reproducibility of Results , Sensitivity and Specificity
10.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 122-30, 2008.
Article in English | MEDLINE | ID: mdl-18982597

ABSTRACT

In this paper we study the impact of denoising the raw high angular resolution diffusion imaging (HARDI) data with the Non-Local Means filter adapted to Rician noise (NLMr). We first show that NLMr filtering improves robustness of apparent diffusion coefficient (ADC) and orientation distribution function (ODF) reconstructions from synthetic HARDI datasets. Our results suggest that the NLMr filtering improve the quality of anisotropy maps computed from ADC and ODF and improve the coherence of q-ball ODFs with the underlying anatomy while not degrading angular resolution. These results are shown on a biological phantom with known ground truth and on a real human brain dataset. Most importantly, we show that multiple measurements of diffusion-weighted (DW) images and averaging these images along each direction can be avoided because NLMr filtering of the individual DW images produces better quality generalized fractional anisotropy maps and more accurate ODF fields than when computed from the averaged DW datasets.


Subject(s)
Algorithms , Artifacts , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
11.
Article in English | MEDLINE | ID: mdl-18982603

ABSTRACT

Diffusion-Weighted MRI (DW-MRI) is subject to random noise yielding measures that are different from their real values, and thus biasing the subsequently estimated tensors. The Non-Local Means (NLMeans) filter has recently been proposed to denoise MRI with high signal-to-noise ratio (SNR). This filter has been shown to allow the best restoration of image intensities for the estimation of diffusion tensors (DT) compared to state-of-the-art methods. However, for DW-MR images with high b-values (and thus low SNR), the noise, which is strictly Rician-distributed, can no longer be approximated as additive white Gaussian, as implicitly assumed in the classical formulation of the NLMeans. High b-values are typically used in high angular resolution diffusion imaging (HARDI) or q-space imaging (QSI), for which an optimal restoration is critical. In this paper, we propose to adapt the NLMeans filter to Rician noise corrupted data. Validation is performed on synthetic data and on real data for both conventional MR images and DT images. Our adaptation outperforms the original NLMeans filter in terms of peak-signal-to-noise ratio (PSNR) for DW-MRI.


Subject(s)
Algorithms , Artifacts , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
12.
Int J Biomed Imaging ; 2008: 590183, 2008.
Article in English | MEDLINE | ID: mdl-18431448

ABSTRACT

A critical issue in image restoration is the problem of noise removal while keeping the integrity of relevant image information. The method proposed in this paper is a fully automatic 3D blockwise version of the nonlocal (NL) means filter with wavelet subbands mixing. The proposed wavelet subbands mixing is based on a multiresolution approach for improving the quality of image denoising filter. Quantitative validation was carried out on synthetic datasets generated with the BrainWeb simulator. The results show that our NL-means filter with wavelet subbands mixing outperforms the classical implementation of the NL-means filter in terms of denoising quality and computation time. Comparison with wellestablished methods, such as nonlinear diffusion filter and total variation minimization, shows that the proposed NL-means filter produces better denoising results. Finally, qualitative results on real data are presented.

13.
Med Image Comput Comput Assist Interv ; 10(Pt 2): 344-51, 2007.
Article in English | MEDLINE | ID: mdl-18044587

ABSTRACT

Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.


Subject(s)
Algorithms , Artifacts , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Data Interpretation, Statistical , Humans , Reproducibility of Results , Sensitivity and Specificity
14.
Neuroimage ; 24(3): 678-91, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15652303

ABSTRACT

Leftward occipital and rightward frontal lobe asymmetry (brain torque) and leftward planum temporale asymmetry have been consistently reported in postmortem and in vivo neuroimaging studies of the human brain. Here automatic image analysis techniques are applied to quantify global and local asymmetries, and investigate the relationship between brain torque and planum temporale asymmetries on T1-weighted magnetic resonance (MR) images of 30 right-handed young healthy subjects (15 male, 15 female). Previously described automatic cerebral hemisphere extraction and 3D interhemispheric reflection-based methods for studying brain asymmetry are applied with a new technique, LowD (Low Dimension), which enables automatic quantification of brain torque. LowD integrates extracted left and right cerebral hemispheres in columns orthogonal to the midsagittal plane (2D column maps), and subsequently integrates slices along the brain's anterior-posterior axis (1D slice profiles). A torque index defined as the magnitude of occipital and frontal lobe asymmetry is computed allowing exploratory investigation of relationships between this global asymmetry and local asymmetries found in the planum temporale. LowD detected significant torque in the 30 subjects with occipital and frontal components found to be highly correlated (P<0.02). Significant leftward planum temporale asymmetry was detected (P<0.05), and the torque index correlated with planum temporale asymmetry (P<0.001). However, torque and total brain volume were not correlated. Therefore, although components of cerebral asymmetry may be related, their magnitude is not influenced by total hemisphere volume. LowD provides increased sensitivity for detection and quantification of brain torque on an individual subject basis, and future studies will apply these techniques to investigate the relationship between cerebral asymmetry and functional laterality.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Frontal Lobe/anatomy & histology , Frontal Lobe/physiology , Functional Laterality/physiology , Image Interpretation, Computer-Assisted/methods , Temporal Lobe/anatomy & histology , Temporal Lobe/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Sex Characteristics
15.
IEEE Trans Med Imaging ; 21(2): 122-38, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11929100

ABSTRACT

We present a new method to automatically compute, reorient, and recenter the mid-sagittal plane in anatomical and functional three-dimensional (3-D) brain images. This iterative approach is composed of two steps. At first, given an initial guess of the mid-sagittal plane (generally, the central plane of the image grid), the computation of local similarity measures between the two sides of the head allows to identify homologous anatomical structures or functional areas, by way of a block matching procedure. The output is a set of point-to-point correspondences: the centers of homologous blocks. Subsequently, we define the mid-sagittal plane as the one best superposing the points on one side and their counterparts on the other side by reflective symmetry. Practically, the computation of the parameters characterizing the plane is performed by a least trimmed squares estimation. Then, the estimated plane is aligned with the center of the image grid, and the whole process is iterated until convergence. The robust estimation technique we use allows normal or abnormal asymmetrical structures or areas to be treated as outliers, and the plane to be mainly computed from the underlying gross symmetry of the brain. The algorithm is fast and accurate, even for strongly tilted heads, and even in presence of high acquisition noise and bias field, as shown on a large set of synthetic data. The algorithm has also been visually evaluated on a large set of real magnetic resonance (MR) images. We present a few results on isotropic as well as anisotropic anatomical (MR and computed tomography) and functional (single photon emission computed tomography and positron emission tomography) real images, for normal and pathological subjects.


Subject(s)
Algorithms , Brain/anatomy & histology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Models, Statistical , Anisotropy , Brain/diagnostic imaging , Computer Simulation , Databases, Factual , Humans , Image Processing, Computer-Assisted/methods , Radiography , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...