Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 15: 1338168, 2024.
Article in English | MEDLINE | ID: mdl-38699454

ABSTRACT

Introduction: Impaired function of brain morphogenic genes is considered one of the predisposing factors for the manifestation of psychiatric and cognitive disorders, such as paranoid schizophrenia (SCZ) and major depressive disorder (MDD). Identification of such genes (genes of neurotrophic factors and guidance molecules among them) and their deleterious genetic variants serves as a key to diagnosis, prevention, and possibly treatment of such disorders. In this study, we have examined the prevalence of genomic variants in brain morphogenic genes in individuals with SCZ and MDD within a Russian population. Methods: We have performed whole-exome sequencing of 21 DNA samples: 11 from individuals with SCZ and 10 with MDD, followed by ARMS (Amplification-Refractory Mutation System) based screening of detected single nucleotide variants (SNVs) in larger groups: 102 for individuals with SCZ, 79 for those with MDD and 103 for healthy donors. Results: Whole-exome sequencing has revealed 226 missense mutations in 79 genes (out of 140 studied), some of which occur in patients with psychiatric disorders significantly more frequently than in healthy donors. We have identified previously undescribed genomic variants in brain morphogenic genes: CDH2 (rs1944294-T and rs17445840-T), DCHS2 (rs11935573-G and rs12500437-G/T) and CDH23 (rs1227051-G/A), significantly associated with the incidence of SCZ and MDD in the Russian population. For some SNVs (rs6265-T, rs1944294-T, rs11935573-G, rs4760-G) sex-biased differences in their prevalence between SCZ/MDD patients and healthy donors was detected. Discussion: However, the functional significance of the SNVs identified has still to be confirmed in cellular and animal models. Once it is fulfilled, these SNVs have the potential to complement the diagnostic toolbox for assessing susceptibility to mental disorders. The data obtained indirectly confirm the importance of adequate brain structure formation for its correct functioning and preservation of mental health.

2.
Front Mol Neurosci ; 17: 1361764, 2024.
Article in English | MEDLINE | ID: mdl-38646100

ABSTRACT

Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.

3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397098

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g., commercially available ASC52telo). However, the ASC52telo cell line has an impaired adipogenic ability and a depressed response to hormones, including 5-HT, GABA, glutamate, noradrenaline, PTH and insulin compared to primary cells. This markedly reduces the potential of the ASC52telo cell line in studying the mechanisms of hormonal control of MSC's physiology. Here, we have established a novel immortalized culture of adipose tissue-derived MSCs via forced telomerase expression after lentiviral transduction. These immortalized cell cultures demonstrate high proliferative potential (up to 40 passages), delayed senescence, as well as preserved primary culture-like functional activity (sensitivity to hormones, ability to hormonal sensitization and differentiation) and immunophenotype up to 17-26 passages. Meanwhile, primary adipose tissue-derived MSCs usually irreversibly lose their properties by 8-10 passages. Observed characteristics of reported immortalized human MSC cultures make them a feasible model for studying molecular mechanisms, which regulate the functional activities of these cells, especially when primary cultures or commercially available cell lines are not appropriate.


Subject(s)
Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Cell Line , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Hormones/metabolism , Cell Proliferation
4.
Noncoding RNA ; 9(5)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37736895

ABSTRACT

Non-coding RNA (ncRNAs) genes have attracted increasing attention in recent years due to their widespread involvement in physiological and pathological processes and regulatory networks. The study of the function and molecular partners of ncRNAs opens up opportunities for the early diagnosis and treatment of previously incurable diseases. However, the classical "loss-of-function" approach in ncRNA function analysis is challenged due to some specific issues. Here, we have studied the potency of two CRISPR/Cas9 variants, wild-type (SpCas9wt) and nickase (SpCas9D10A) programmable nucleases, for the editing of extended DNA sequences in human mesenchymal stromal cells (MSCs). Editing the genes of fibrosis-related hsa-miR-21-5p and hsa-miR-29c-3p, we have shown that a pair of SpCas9D10A molecules can effectively disrupt miRNA genes within the genomes of MSCs. This leads not only to a decrease in the level of knockout miRNA in MSCs and MSC-produced extracellular vesicles, but also to a change in cell physiology and the antifibrotic properties of the cell secretome. These changes correlate well with previously published data for the knockdown of certain miRNAs. The proposed approach can be used to knock out ncRNA genes within the genomes of MSCs or similar cell types in order to study their function in biological processes.

5.
Antioxidants (Basel) ; 12(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37507997

ABSTRACT

Prolonged hyperglycemia related to diabetes and its complications leads to multiple cellular disorders, the central one being the dysfunction of mitochondria. Voltage-dependent anion channels (VDAC) of the outer mitochondrial membrane control the metabolic, ionic, and energy cross-talk between mitochondria and the rest of the cell and serve as the master regulators of mitochondrial functions. Here, we have investigated the effect of pharmacological suppression of VDAC1 by the newly developed inhibitor of its oligomerization, VBIT-4, in the primary culture of mouse lung endotheliocytes and downregulated expression of VDAC1 in human skin fibroblasts on the progression of mitochondrial dysfunction upon hyperglycemic stress. The cells were grown in high-glucose media (30 mM) for 36 h. In response to hyperglycemia, the mRNA level of VDAC1 increased in endotheliocytes and decreased in human skin fibroblasts. Hyperglycemia induced overproduction of mitochondrial ROS, an increase in the susceptibility of the organelles to mitochondrial permeability transition (MPT) pore opening and a drop in mitochondrial membrane potential, which was accompanied by a decrease in cell viability in both cultures. Treatment of endotheliocytes with 5 µM VBIT-4 abolished the hyperglycemia-induced increase in susceptibility to spontaneous opening of the MPT pore and ROS generation in mitochondria. Silencing of VDAC1 expression in human skin fibroblasts exposed to high glucose led to a less pronounced manifestation of all the signs of damage to mitochondria. Our data identify a mitochondria-related response to pharmacological and genetic suppression of VDAC activity in vascular cells in hyperglycemia and suggest the potential therapeutic value of targeting these channels for the treatment of diabetic vasculopathies.

6.
Pharmaceutics ; 15(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37376058

ABSTRACT

Intracerebral hemorrhage is an unmet medical need that often leads to the disability and death of a patient. The lack of effective treatments for intracerebral hemorrhage makes it necessary to look for them. Previously, in our proof-of-concept study (Karagyaur M et al. Pharmaceutics, 2021), we have shown that the secretome of multipotent mesenchymal stromal cells (MSC) provides neuroprotection of the brain in a model of intracerebral hemorrhage in rats. Here, we have conducted a systematic study of the therapeutic potential of the MSC secretome in the model of hemorrhagic stroke and provided answers to the questions that need to be addressed in order to translate the secretome-based drug into clinical practice: routes and multiplicity of administration, optimal dose and door-to-treatment time. We have found that MSC secretome reveals prominent neuroprotective activity when administered intranasally or intravenously within 1-3 h after hemorrhage modeling, even in aged rats, and its multiple injections (even within 48 h) are able to reduce the delayed negative effects of hemorrhagic stroke. To our knowledge, this study provides the first systematic investigation of the therapeutic activity of a biomedical MSC-based cell-free drug in intracerebral hemorrhage and is an integral part of its preclinical studies.

7.
Toxins (Basel) ; 15(3)2023 03 18.
Article in English | MEDLINE | ID: mdl-36977120

ABSTRACT

The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0-8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity.


Subject(s)
Escherichia coli , Peptides , Animals , Amino Acid Sequence , Protein Binding/physiology , Escherichia coli/metabolism , Ligands , Peptides/pharmacology , Peptides/metabolism , Potassium Channel Blockers/chemistry , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Mammals/metabolism
8.
Cells ; 11(20)2022 10 14.
Article in English | MEDLINE | ID: mdl-36291103

ABSTRACT

Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genome , Cloning, Molecular
9.
Cells ; 11(14)2022 07 07.
Article in English | MEDLINE | ID: mdl-35883584

ABSTRACT

In this study, we developed a novel Cre/lox71-based system for the controlled transient expression of target genes. We used the bacteriophage P1 Cre recombinase, which harbors a short, highly specific DNA-binding site and does not have endogenous binding sites within mouse or human genomes. Fusing the catalytically inactive form of Cre recombinase and the VP64 transactivation domain (VP16 tetramer), we constructed the artificial transcription factor Cre-VP64. This transcription factor binds to the lox71 sites within the promoter region of the target gene and, therefore, upregulates its expression. We tested the Cre-VP64/lox71 system for the controlled expression of several genes, including growth factors and the genome editor CRISPR/Cas9, and obtained superior efficiency in the regulation of transgene expression, achieving a high expression level upon induction together with low basal activity. This system or its modified forms can be suggested as a novel effective tool for the transitory controlled expression of target genes for functional genomic studies, as well as for gene therapy approaches.


Subject(s)
Gene Editing , Integrases , Animals , Gene Editing/methods , Humans , Integrases/metabolism , Mice , Recombinant Proteins/genetics , Transcription Factors/genetics
10.
Toxins (Basel) ; 12(12)2020 12 16.
Article in English | MEDLINE | ID: mdl-33339256

ABSTRACT

Recently developed fluorescent protein-scorpion toxin chimeras (FP-Tx) show blocking activities for potassium voltage-gated channels of Kv1 family and retain almost fully pharmacological profiles of the parental peptide toxins (Kuzmenkov et al., Sci Rep. 2016, 6, 33314). Here we report on N-terminally green fluorescent protein (GFP)-tagged agitoxin 2 (GFP-L2-AgTx2) with high affinity and selectivity for the binding site of Kv1.3 channel involved in the pathogenesis of various (primarily of autoimmune origin) diseases. The basis for this selectivity relates to N-terminal location of GFP, since transposition of GFP to the C-terminus of AgTx2 recovered specific interactions with the Kv1.1 and Kv1.6 binding sites. Competitive binding experiments revealed that the binding site of GFP-L2-AgTx2 overlaps that of charybdotoxin, kaliotoxin 1, and agitoxin 2, the known Kv1.3-channel pore blockers. GFP-L2-AgTx2 was demonstrated to be applicable as a fluorescent probe to search for Kv1.3 pore blockers among individual compounds and in complex mixtures, to measure blocker affinities, and to visualize Kv1.3 distribution at the plasma membrane of Kv1.3-expressing HEK293 cells. Our studies show that definite combinations of fluorescent proteins and peptide blockers can result in considerable modulation of the natural blocker-channel binding profile yielding selective fluorescent ligands of certain channels.


Subject(s)
Green Fluorescent Proteins/metabolism , Kv1.3 Potassium Channel/metabolism , Potassium Channel Blockers/metabolism , Scorpion Venoms/metabolism , Amino Acid Sequence , Binding Sites/physiology , Green Fluorescent Proteins/chemistry , HEK293 Cells , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/chemistry , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Protein Structure, Secondary , Scorpion Venoms/analysis , Scorpion Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...