Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098449

ABSTRACT

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , MAP Kinase Signaling System , Immune Checkpoint Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1 , Endothelial Cells/pathology , Protein Kinase Inhibitors/adverse effects , Anilides/pharmacology , Anilides/therapeutic use , RNA, Small Nuclear/therapeutic use
3.
Nat Commun ; 12(1): 5086, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429404

ABSTRACT

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.


Subject(s)
Heterografts , Neoplasms/genetics , Neoplasms/metabolism , Xenograft Model Antitumor Assays , Animals , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genome , Genomics , Humans , Male , Mice , Models, Biological , Mutation , Transcriptome
4.
Science ; 326(5954): 871-4, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19892989

ABSTRACT

Pathogen recognition by T cells is dependent on their exquisite specificity for self-major histocompatibility complex (MHC) molecules presenting a bound peptide. Although this specificity results from positive and negative selection of developing T cells in the thymus, the relative contribution of these two processes remains controversial. To address the relation between the selecting peptide-MHC complex and the specificity of mature T cells, we generated transgenic mice that express a single peptide-MHC class I complex. We demonstrate that positive selection of CD8 T cells in these mice results in an MHC-specific repertoire. Although selection on a single complex is peptide promiscuous, mature T cells are highly peptide specific. Thus, positive selection imparts MHC and peptide specificity on the peripheral CD8 T cell repertoire.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , H-2 Antigens/immunology , Major Histocompatibility Complex/immunology , Peptides/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cross Reactions , Cytotoxicity, Immunologic , H-2 Antigens/genetics , Lymphocyte Activation , Mice , Mice, Knockout , Mice, Transgenic , Ovalbumin/immunology , Protein Multimerization , Spleen/cytology , Spleen/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Vesiculovirus/immunology
5.
Mol Ther ; 14(1): 5-13, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16698321

ABSTRACT

Although gene therapy has reduced manifestations of genetic diseases, immune responses can abrogate the effect. One approach to inducing tolerance is to perform gene transfer in newborns when the immune system is immature. We demonstrate here that the dose of retroviral vector (RV) is important in mice, as mucopolysaccharidosis I (MPS I) mice that received neonatal intravenous gene therapy with a high dose of a canine alpha-L-iduronidase (cIDUA)-expressing RV had stable expression, while those that received a low dose did not. It was unclear, however, if neonatal transfer with any dose could induce tolerance in large animals. Therefore, newborn MPS I cats were injected intravenously with the RV expressing cIDUA. Although this resulted in high serum IDUA activity due to secretion by transduced cells, expression fell due to a CTL response. Cats that transiently received the immunosuppressive agent CTLA4-Ig did not develop a CTL response. In contrast, MPS I dogs, which can respond immunologically to canine IDUA, had stable serum IDUA activity after neonatal gene therapy. We conclude that cats, but not dogs, mount a potent CTL response to canine IDUA after neonatal gene therapy, which can be prevented with transient CTLA4-Ig.


Subject(s)
Genetic Therapy/methods , Immunoconjugates/pharmacology , Mucopolysaccharidosis I/therapy , T-Lymphocytes, Cytotoxic/immunology , Abatacept , Animals , Animals, Newborn , Cats , Dogs , Dose-Response Relationship, Drug , Genetic Vectors/genetics , Glycosaminoglycans/metabolism , Iduronidase/deficiency , Iduronidase/genetics , Iduronidase/metabolism , Immune Tolerance/drug effects , Immunosuppressive Agents/pharmacology , Liver/drug effects , Liver/metabolism , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...