Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(43): 17356-17363, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37876283

ABSTRACT

Various compositional defects such as Mo3Al2B4, Mo4Al3B4, Mo6Al5B6 and Al3Mo, together with MoB MBene, are observed to be coexisting in a MoAlB MAB phase thin film grown at 800 °C by high-power pulsed magnetron sputtering. An overall film composition of Mo0.29Al0.33B0.38 is measured by time-of-flight elastic recoil detection analysis. The concurrent formation of these compositional defects in the MoAlB matrix occurs during the synthesis without using any chemical reagent, and their coexistence with the MAB phase is thermodynamically possible, as elucidated by density functional theory simulations. These defect phases are imaged at the atomic scale by aberration-corrected scanning transmission electron microscopy. A rough estimation of defect populations of 0.073, 0.037, 0.042 and 0.039 nm-1 for Mo3Al2B4, Mo4Al3B4, Mo6Al5B6 and Al3Mo compositional defects, respectively, is performed within the MoAlB matrix. The calculated energies of formation reveal that the Mo4Al3B4 and Mo6Al5B6 defect phases form spontaneously in the MoAlB host matrix, while the energy barrier towards the formation of the metastable Mo3Al2B4 phase is approx. 20 meV per atom. The small magnitude of this barrier is easily overcome during vapor phase condensation, and the surface diffusion of adatoms during deposition leads to local compositional variations and the coexistence of the defect phases in the host matrix. Additionally, at grain boundaries, the presence of MoB MBene is observed, with an interlayer spacing between two Mo2B2 units increasing up to ∼50% compared to the pristine MoAlB phase.

2.
Rev Sci Instrum ; 94(3): 035104, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012801

ABSTRACT

We present a new analytical instrument for studying the optical properties of materials in different gaseous environments at room and controlled elevated temperatures. The system consists of a vacuum chamber, which is equipped with temperature and pressure controllers, a heating band, and a residual gas analyzer and is connected to a gas feeding line via a leak valve. Two transparent view ports located around a sample holder allow for optical transmission and pump-probe spectroscopy using an external optical setup. The capabilities of the setup are demonstrated by conducting two experiments. In the first experiment, we study the photodarkening and bleaching kinetics of photochromic oxygen-containing yttrium hydride thin films illuminated in ultra high-vacuum and correlate it with changes in partial pressures inside the vacuum chamber. In the second study, we investigate changes in the optical properties of a 50 nm V film upon hydrogen absorption.

3.
Rev Sci Instrum ; 94(2): 023902, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36859015

ABSTRACT

A recently presented chemical vapor deposition (CVD) method involves using plasma electrons as reducing agents for deposition of metals. The plasma electrons are attracted to the substrate surface by a positive substrate bias. Here, we present how a standard quartz crystal microbalance (QCM) system can be modified to allow applying a DC bias to the QCM sensor to attract plasma electrons to it and thereby also enable in situ growth monitoring during the electron-assisted CVD method. We show initial results from mass gain evolution over time during deposition of iron films using the biased QCM and how the biased QCM can be used for process development and provide insight into the surface chemistry by time-resolving the CVD method. Post-deposition analyses of the QCM crystals by cross-section electron microscopy and high-resolution x-ray photoelectron spectroscopy show that the QCM crystals are coated by an iron-containing film and thus function as substrates in the CVD process. A comparison of the areal mass density given by the QCM crystal and the areal mass density from elastic recoil detection analysis and Rutherford backscattering spectrometry was done to verify the function of the QCM setup. Time-resolved CVD experiments show that this biased QCM method holds great promise as one of the tools for understanding the surface chemistry of the newly developed CVD method.

4.
Materials (Basel) ; 16(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614754

ABSTRACT

Impurities can be incorporated during thin film deposition, but also can originate from atmosphere exposure. As impurities can strongly affect the composition-structure-property relations in magnetron sputter deposited thin films, it is important to distinguish between both incorporation channels. Therefore, the impurity incorporation by atmosphere exposure into sputtered Mg, Al, and Ca thin films is systematically studied by a variation of the deposition temperatures and atmosphere exposure times. Deposition temperature variation results in morphological modifications explained by considering surface and bulk diffusion as well as grain boundary motion and evaporation. The film morphologies exhibiting the lowest oxygen concentrations, as measured by energy dispersive X-ray spectroscopy, are obtained at a homologous temperature of 0.4 for both Mg and Al thin films. For Ca, preventing atmosphere exposure is essential to hinder impurity incorporation: By comparing the impurity concentration in Al-capped and uncapped thin films, it is demonstrated that Ca thin films are locally protected by Al-capping, while Mg (and Al) form native passivation layers. Furthermore, it can be learned that the capping (or self-passivation) efficiency in terms of hindering further oxidation of the films in atmosphere is strongly dependent on the underlying morphology, which in turn is defined by the growth temperature.

5.
Ultramicroscopy ; 246: 113673, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610317

ABSTRACT

It is known that measurement parameters can significantly influence the elemental composition determined by atom probe tomography (APT). Especially results obtained by laser-assisted APT show a strong effect of the laser pulse energy on the apparent elemental composition. Within this study laser-assisted APT experiments were performed on Cr0.51N0.49 and thermally more stable (Cr0.47Al0.53)0.49N0.51, comparing two different base temperatures (i.e. 15 and 60 K), laser wavelengths (i.e. 532 and 355 nm) and systematically modified laser pulse energies. Absolute chemical compositions from laser-assisted APT were compared to data obtained from ion beam analysis. The deduced elemental composition of CrN exhibited a strong increase of the Cr content when the laser pulse energy was increased for both laser wavelengths. For low laser pulse energies Cr, CrN, N and N2 ions were identified, while the amount of detected Cr ions increased and the amount of N ions strongly decreased at higher laser pulse energies. Further, increased detection of more complex Cr-containing ions such as Cr2N at the expense of CrN was observed at higher pulse energies. At the highest pulse energy levels used within this work, the resulting Cr content was > 80 at%, dominated by the amount of detected elemental Cr ions. The change of the mass spectrum of the detected ions with increasing laser pulse energy provides evidence that high laser pulse energies initiate the decomposition of CrN during the APT measurement, consistent with the known thermal decomposition path into Cr2N and subsequently into Cr and gaseous N. In contrast, variation of the laser pulse energy for the thermally more stable CrAlN resulted only in a slight increase of Cr and a decrease of the resulting concentrations of Al and N with increasing laser pulse energy and no change in the type of detected ions. In conclusion, within the present study, the decomposition of a coating material with low thermal stability induced by laser-assisted APT was reported for the first time, emphasizing the importance of the selection of suitable measurement parameters for metastable materials, which are prone to thermal decomposition.

6.
ACS Appl Mater Interfaces ; 14(18): 21173-21180, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35477302

ABSTRACT

Flexible memristors hold great promise for flexible electronics applications but are still lacking of good electrical performance together with mechanical flexibility. Herein, we demonstrate a full-inorganic nanoscale flexible memristor by using free-standing ductile α-Ag2S films as both a flexible substrate and a functional electrolyte. The device accesses dense multiple-level nonvolatile states with a record high 106 ON/OFF ratio. This exceptional memristor performance is induced by sequential processes of Schottky barrier modification at the contact interface and filament formation inside the electrolyte. In addition, it is crucial to ensure that the cathode junction, where Ag+ is reduced to Ag, dominates the total resistance and takes the most of setting bias before the filament formation. Our study provides a comprehensive insight into the resistance-switching mechanism in conductive-bridging memristors and offers a new strategy toward high performance flexible memristors.

7.
Commun Biol ; 5(1): 366, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440676

ABSTRACT

The human amygdala is involved in processing of memory, decision-making, and emotional responses. Previous studies suggested that the amygdala may represent a neurogenic niche in mammals. By combining two distinct methodological approaches, lipofuscin quantification and 14C-based retrospective birth dating of neurons, along with mathematical modelling, we here explored whether postnatal neurogenesis exists in the human amygdala. We investigated post-mortem samples of twelve neurologically healthy subjects. The average rate of lipofuscin-negative neurons was 3.4%, representing a substantial proportion of cells substantially younger than the individual. Mass spectrometry analysis of genomic 14C-concentrations in amygdala neurons compared with atmospheric 14C-levels provided evidence for postnatal neuronal exchange. Mathematical modelling identified a best-fitting scenario comprising of a quiescent and a renewing neuronal population with an overall renewal rate of >2.7% per year. In conclusion, we provide evidence for postnatal neurogenesis in the human amygdala with cell turnover rates comparable to the hippocampus.


Subject(s)
Lipofuscin , Neurogenesis , Amygdala/physiology , Animals , Hippocampus/physiology , Humans , Mammals , Neurogenesis/physiology , Retrospective Studies
8.
Materials (Basel) ; 15(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268865

ABSTRACT

We report on the formation of Ag-containing ZrCuAlNi thin film metallic glass (nano)composites by a hybrid direct-current magnetron sputtering and high-power pulsed magnetron sputtering process. The effects of Ag content, substrate temperature and substrate bias potential on the phase formation and morphology of the nanocomposites were investigated. While applying a substrate bias potential did not strongly affect the morphological evolution of the films, the Ag content dictated the size and distribution of Ag surface segregations. The films deposited at low temperatures were characterized by strong surface segregations, formed by coalescence and Ostwald ripening, while the volume of the films remained featureless. At higher deposition temperature, elongated Ag segregations were observed in the bulk and a continuous Ag layer was formed at the surface as a result of thermally enhanced surface diffusion. While microstructural observations have allowed identifying both surface and bulk segregations, an indirect method for detecting the presence of Ag segregations is proposed, by measuring the electrical resistivity of the films.

9.
Small ; 18(14): e2106093, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35191181

ABSTRACT

Understanding phase transitions of ultrathin metal silicides is crucial for the development of nanoscale silicon devices. Here, the phase transition of ultrathin (3.6 nm) Ni silicides on Si(100) substrates is investigated using an in situ synthesis and characterization approach, supplemented with ex situ transmission electron microscopy and nano-beam electron diffraction. First, an ultrathin epitaxial layer and ordered structures at the interface are observed upon room-temperature deposition. At 290 °C, this structure is followed by formation of an orthorhombic δ-Ni2 Si phase exhibiting long-range order and extending to the whole film thickness. An unprecedented direct transition from this δ-Ni2 Si phase to the final NiSi2- x phase is observed at 290 °C, skipping the intermediate monosilicide phase. Additionally, the NiSi2- x phase is found epitaxial on the substrate. This transition process substantially differs from observations for thicker films. Furthermore, considering previous studies, the long-range ordered orthorhombic δ-Ni2 Si phase is suggested to occur regardless of the initial Ni thickness. The thickness of this ordered δ-Ni2 Si layer is, however, limited due to the competition of different orientations of the δ-Ni2 Si crystal. Whether the formed δ-Ni2 Si layer consumes all deposited nickel is expected to determine whether the monosilicide phase appears before the transition to the final NiSi2- x phase.

10.
Sci Rep ; 11(1): 21846, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750422

ABSTRACT

Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.


Subject(s)
Air Pollutants, Occupational/toxicity , Stainless Steel/toxicity , Steel/toxicity , Welding , Air Pollutants, Occupational/chemistry , Animals , Cell Line , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Mice , Microscopy, Electron, Transmission , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/ultrastructure , Particle Size , Reactive Oxygen Species/metabolism , Stainless Steel/chemistry , Steel/chemistry , Welding/methods
11.
ACS Nano ; 15(11): 17938-17946, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34762404

ABSTRACT

Solid-state nanopores of on-demand dimensions and shape can facilitate desired sensor functions. However, reproducible fabrication of arrayed nanopores of predefined dimensions remains challenging despite numerous techniques explored. Here, bowl-shaped nanopores combining properties of ultrathin membrane and tapering geometry are manufactured using a self-limiting process developed on the basis of standard silicon technology. The upper opening of the bowl-nanopores is 60-120 nm in diameter, and the bottom orifice reaches sub-5 nm. Current-voltage characteristics of the fabricated bowl-nanopores display insignificant rectification indicating weak ionic selectivity, in accordance to numerical simulations showing minor differences in electric field and ionic velocity upon the reversal of bias voltages. Simulations reveal, concomitantly, high-momentum electroosmotic flow downward along the concave nanopore sidewall. Collisions between the left and right tributaries over the bottom orifice drive the electroosmotic flow both up into the nanopore and down out of the nanopore through the orifice. The resultant asymmetry in electrophoretic-electroosmotic force is considered the cause responsible for the experimentally observed strong directionality in λ-DNA translocation with larger amplitude, longer duration, and higher frequencies for the downward movements from the upper opening than the upward ones from the orifice. Thus, the resourceful silicon nanofabrication technology is shown to enable nanopore designs toward enriching sensor applications.


Subject(s)
Nanopores , Silicon , DNA , Electroosmosis , Silicon Compounds
12.
Nanoscale ; 13(43): 18077-18083, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34726227

ABSTRACT

Two-dimensional (2D) inorganic transition metal boride nanosheets are emerging as promising post-graphene materials in energy research due to their unique properties. State-of-the-art processing strategies are based on chemical etching of bulk material synthesized via solid-state reaction at temperatures above 1000 °C. Here, we report the direct formation of MoB MBene domains in a MoAlB thin film by Al deintercalation from MoAlB in the vicinity of AlOx regions. Hence, based on these results a straightforward processing pathway for the direct formation of MoB MBene-AlOx heterostructures without employing chemical etching is proposed here.

13.
J Am Chem Soc ; 143(44): 18626-18634, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34726402

ABSTRACT

The growing field of MOF-catalyst composites often relies on postsynthetic modifications for the installation of active sites. In the resulting MOFs, the spatial distribution of the inserted catalysts has far-reaching ramifications for the performance of the system and thus needs to be precisely determined. Herein, we report the application of a scanning nuclear microprobe for accurate and nondestructive depth profiling of individual UiO-66 and UiO-67 (UiO = Universitetet i Oslo) single crystals. Initial optimization work using native UiO-66 crystals yielded a microbeam method which avoided beam damage, while subsequent analysis of Zr/Hf mixed-metal UiO-66 crystals demonstrated the potential of the method to obtain high-resolution depth profiles. The microbeam method was further used to analyze the depth distribution of postsynthetically introduced organic moieties, revealing either core-shell or uniform incorporation can be obtained depending on the size of the introduced molecule, as well as the number of carboxylate binding groups. Finally, the spatial distribution of platinum centers that were postsynthetically installed in the bpy binding pockets of UiO-67-bpy (bpy = 5,5'-dicarboxyy-2,2'-bipyridine) was analyzed by microbeam and contextualized. We expect that the method presented herein will be applicable for characterizing a wide variety of MOFs subjected to postsynthetic modifications and provide information crucial for their optimization as functional materials.

14.
Phys Rev Lett ; 127(13): 136102, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34623839

ABSTRACT

We report real space location of hydrogen in single crystalline Fe/V superstructures. Anisotropic strain is quantified versus hydrogen concentration by using the yield of backscattered primary 2 MeV ^{4}He ions for incidence in different crystallographic directions. From a comparison of ion channeling in combination with ^{1}H(^{15}N,αγ)^{12}C nuclear reaction analysis and Monte Carlo simulations we show that hydrogen is located in octahedral z sites and quantify its vibrational amplitude of 0.2 Å.

15.
Sci Rep ; 11(1): 17454, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465858

ABSTRACT

Magnesium-based lightweight structural materials exhibit potential for energy savings. However, the state-of-the-art quest for novel compositions with improved properties through conventional bulk metallurgy is time, energy, and material intensive. Here, the opportunities provided by combinatorial thin film materials design for the sustainable development of magnesium alloys are evaluated. To characterise the impurity level of (Mg,Ca) solid solution thin films within grains and grain boundaries, scanning transmission electron microscopy and atom probe tomography are correlatively employed. It is demonstrated that control of the microstructure enables impurity levels similar to bulk-processed alloys. In order to substantially reduce time, energy, and material requirements for the sustainable development of magnesium alloys, we propose a three-stage materials design strategy: (1) Efficient and systematic investigation of composition-dependent phase formation by combinatorial film growth. (2) Correlation of microstructural features and mechanical properties for selected composition ranges by rapid alloy prototyping. (3) Establishment of synthesis-microstructure-property relationships by conventional bulk metallurgy.

16.
Adv Mater ; 33(42): e2102935, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34469013

ABSTRACT

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits.  The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi2 Te4 is, however, antiferromagnetic with 25 K Néel temperature and is strongly n-doped. In this work, p-type MnSb2 Te4 , previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i) Ferromagnetic hysteresis with record Curie temperature of 45-50 K, ii) out-of-plane magnetic anisotropy, iii) a 2D Dirac cone with the Dirac point close to the Fermi level, iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy, and v) a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy (STS), are shown. Moreover, a critical exponent of the magnetization ß ≈ 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn-Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2 Te4 a robust topological insulator and new benchmark for magnetic topological insulators.

17.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34458848

ABSTRACT

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

18.
J Forensic Sci ; 66(4): 1401-1409, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33748972

ABSTRACT

Determining the sequence of inks in a questioned document is important in forensic science. Conventional and micro beam-based ion beam analysis using Rutherford backscattering spectrometry (RBS) and particle-induced X-ray emission were employed to study the depth distribution of chemical elements in plain paper and inks/toner deposited by different pens as well as inkjet and laser printers. Composition depth profiling with high lateral resolution was performed with focus on areas where two different coloring agents overlapped. We identify under which conditions the sequence of inks deposited can be reconstructed, analyzing the continuity of characteristic contributions to the obtained signals, with a focus on the depth-resolved RBS data. The order of deposition was correctly determined for combinations of two different laser printers and in certain cases for pens. Results indicate a potential for analysis, depending on the composition of staining agent, that is, in particular if heavy species are present in sufficiently high concentration. In such cases, also characters obscured or modified by an agent of different composition can be revealed. Changing the probing depth by modifying the beam energy could yield additional information.

19.
Materials (Basel) ; 13(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171727

ABSTRACT

The HfV2-HfV2O7 composite is proposed as a material with potentially temperature-independent thermophysical properties due to the combination of anomalously increasing thermoelastic constants of HfV2 with the negative thermal expansion of HfV2O7. Based on literature data, the coexistence of both a near-zero temperature coefficient of elasticity and a coefficient of thermal expansion is suggested for a composite with a phase fraction of approximately 30 vol.% HfV2 and 70 vol.% HfV2O7. To produce HfV2-HfV2O7 composites, two synthesis pathways were investigated: (1) annealing of sputtered HfV2 films in air to form HfV2O7 oxide on the surface and (2) sputtering of HfV2O7/HfV2 bilayers. The high oxygen mobility in HfV2 is suggested to inhibit the formation of crystalline HfV2-HfV2O7 composites by annealing HfV2 in air due to oxygen-incorporation-induced amorphization of HfV2. Reducing the formation temperature of crystalline HfV2O7 from 550 °C, as obtained upon annealing, to 300 °C using reactive sputtering enables the synthesis of crystalline bilayered HfV2-HfV2O7.

20.
Molecules ; 25(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664654

ABSTRACT

We report preferential orientation control in photochromic gadolinium oxyhydride (GdHO) thin films deposited by a two-step process. Gadolinium hydride (GdH2-x) films were grown by reactive magnetron sputtering, followed by oxidation in air. The preferential orientation, grain size, anion concentrations and photochromic response of the films were strongly dependent on the deposition pressure. The GdHO films showed a preferential orientation along the [100] direction and exhibited photochromism when synthesized at deposition pressures of up to 5.8 Pa. The photochromic contrast was larger than 20% when the films were deposited below 2.8 Pa with a 0.22 H2/Ar flow ratio. We argue that the relation of preferential orientation and the post deposition oxidation since oxygen concentration is known to be a key parameter for photochromism in rare-earth oxyhydride thin films. The experimental observations described above were explained by the decrease of the grain size as a result of the increase of the deposition pressure of the sputtering gas, followed by a higher oxygen incorporation.

SELECTION OF CITATIONS
SEARCH DETAIL
...