Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur J Clin Microbiol Infect Dis ; 42(4): 399-411, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36790530

ABSTRACT

PURPOSE: This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS: The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS: The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS: The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Virulence/genetics , Serogroup , Microbial Sensitivity Tests , Pneumococcal Infections/microbiology , Serotyping , Pneumococcal Vaccines
2.
Mar Drugs ; 19(6)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204046

ABSTRACT

New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.


Subject(s)
Animals, Wild/microbiology , Anti-Infective Agents , Aquatic Organisms/microbiology , Bacteriocins/genetics , Enterococcus/genetics , Probiotics , Terpenes , Animals , Anti-Infective Agents/metabolism , Bacteriocins/classification , Bacteriocins/metabolism , Computational Biology , Enterococcus/metabolism , Feces/microbiology , Multigene Family , Probiotics/metabolism , Terpenes/classification , Terpenes/metabolism
3.
Rev Soc Bras Med Trop ; 53: e20200431, 2020.
Article in English | MEDLINE | ID: mdl-33174961

ABSTRACT

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen causing healthcare-associated infections. Owing to the restricted use of beta-lactams in MRSA infections, non-beta-lactam antimicrobials are required for treatment. However, MRSA can develop resistance mechanisms to non-beta-lactam antimicrobials, which reduces viable treatment options. Here, we evaluated the antimicrobial susceptibility and resistance genes of MRSA isolated from hospitalized patients in South Brazil. METHODS: The antimicrobial susceptibilities of hospital MRSA (217) isolates were determined by disk diffusion or microdilution methods. Additionally, the presence of 14 resistance genes and SCCmec typing was performed by PCR. RESULTS: Among the antimicrobials tested, we observed high erythromycin (74.2%), ciprofloxacin (64.5%), and clindamycin (46.1%) resistance rates and complete susceptibility to linezolid and vancomycin. Seventeen different patterns of MRSA antimicrobial resistance were observed, of which 42.9% represented multidrug resistance. Among erythromycin-resistant MRSA, 53.4%, 45.3%, 37.9%, 13.0%, and 6.8% carried ermA, msrA, msrB, ermC, and ermB genes, respectively. Among clindamycin-resistant MRSA, 83%, 17%, 10%, 4%, and 2% carried ermA, ermC, ermB, linA, and linB genes, respectively. Among gentamicin-resistant MRSA, 96.8%, 83.9%, and 9.7% carried aac(6')/aph(2''), aph(3')-IIIa, and ant(4')-Ia genes, respectively. Among tetracycline-resistant MRSA, 6.5% and 93.5% carried tetK and tetM genes, respectively. Lastly, among trimethoprim/sulfamethoxazole-resistant MRSA, 13.3% and 100% carried dfrA and dfrG genes, respectively. The SCCmec type IV isolates were detected more frequently, whereas the SCCmec type III isolates exhibited higher multidrug resistance. CONCLUSIONS: The study data provides information regarding the MRSA resistance profile in South Brazil that is associated with the clinical conditions of patients and can contribute to clinical decision-making.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Brazil , Hospitals , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
4.
Braz J Microbiol ; 51(4): 1819-1823, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33074551

ABSTRACT

In methicillin-resistant Staphylococcus aureus (MRSA) treatment, the vancomycin minimum inhibitory concentration (MIC) increase, vancomycin heteroresistance (hVISA) presence, and accessory gene regulator (agr) dysfunction are predictors of vancomycin therapy failure. This study evaluated the association between vancomycin MIC (≥ 1.0 µg/mL) and agr dysfunction in invasive MRSA isolates. Vancomycin MIC, hVISA phenotype, agr group, and function were determined in 171 MRSA isolates obtained between 2014 and 2019 from hospitals in Porto Alegre, Brazil. All MRSA were susceptible to vancomycin; 16.4% of these had MIC ≥ 1.0 µg/mL. Seventeen MRSA isolates expressed the hVISA phenotype; 35.3% of them had MIC of 1.5 µg/mL. agr groups I (40.9%) and II (47.1%) were the most found groups for MRSA and hVISA isolates, respectively. The proportion of MRSA with vancomycin MIC ≥ 1.0 µg/mL in agr group II was significantly higher than in agr groups I and III (p = 0.002). agr dysfunction was observed in 4.7% (8/171) of MRSA, especially those with vancomycin MIC ≥ 1.0 µg/mL (p < 0.001). In addition, six isolates (35.3%; 6/17) with hVISA phenotype presented agr dysfunction, which was significantly higher than that in non-hVISA phenotype (p < 0.001). In conclusion, agr dysfunction in MRSA is associated with vancomycin MIC ≥ 1.0 µg/mL and hVISA phenotype, which suggests that agr dysfunction might confer potential advantages on MRSA to survive in invasive infections.


Subject(s)
Bacterial Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Trans-Activators/metabolism , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Brazil , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Phenotype , Staphylococcal Infections/microbiology , Trans-Activators/genetics , Vancomycin Resistance/drug effects
5.
BMC Microbiol ; 20(1): 237, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32746783

ABSTRACT

BACKGROUND: The increase in bacterial resistance phenotype cases is a global health problem. New strategies must be explored by the scientific community in order to create new treatment alternatives. Animal venoms are a good source for antimicrobial peptides (AMPs), which are excellent candidates for new antimicrobial drug development. Cathelicidin-related antimicrobial peptides (CRAMPs) from snake venoms have been studied as a model for the design of new antimicrobial pharmaceuticals against bacterial infections. RESULTS: In this study we present an 11 amino acid-long peptide, named pseudonajide, which is derived from a Pseudonaja textilis venom peptide and has antimicrobial and antibiofilm activity against Staphylococcus epidermidis. Pseudonajide was selected based on the sequence alignments of various snake venom peptides that displayed activity against bacteria. Antibiofilm activity assays with pseudonajide concentrations ranging from 3.12 to 100 µM showed that the lowest concentration to inhibit biofilm formation was 25 µM. Microscopy analysis demonstrated that pseudonajide interacts with the bacterial cell envelope, disrupting the cell walls and membranes, leading to morphological defects in prokaryotes. CONCLUSIONS: Our results suggest that pseudonajide's positives charges interact with negatively charged cell wall components of S. epidermidis, leading to cell damage and inhibiting biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Cell Membrane/drug effects , Cell Wall/drug effects , Snake Venoms/chemistry , Staphylococcus epidermidis/drug effects , Amino Acid Motifs , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Biofilms/growth & development , Cell Line , Cell Membrane/metabolism , Cell Survival/drug effects , Cell Wall/metabolism , Gene Expression/drug effects , Humans , Permeability/drug effects , Teichoic Acids/genetics , Teichoic Acids/metabolism
6.
Rev. Soc. Bras. Med. Trop ; 53: e20200431, 2020. tab, graf
Article in English | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136795

ABSTRACT

Abstract INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen causing healthcare-associated infections. Owing to the restricted use of beta-lactams in MRSA infections, non-beta-lactam antimicrobials are required for treatment. However, MRSA can develop resistance mechanisms to non-beta-lactam antimicrobials, which reduces viable treatment options. Here, we evaluated the antimicrobial susceptibility and resistance genes of MRSA isolated from hospitalized patients in South Brazil. METHODS: The antimicrobial susceptibilities of hospital MRSA (217) isolates were determined by disk diffusion or microdilution methods. Additionally, the presence of 14 resistance genes and SCCmec typing was performed by PCR. RESULTS: Among the antimicrobials tested, we observed high erythromycin (74.2%), ciprofloxacin (64.5%), and clindamycin (46.1%) resistance rates and complete susceptibility to linezolid and vancomycin. Seventeen different patterns of MRSA antimicrobial resistance were observed, of which 42.9% represented multidrug resistance. Among erythromycin-resistant MRSA, 53.4%, 45.3%, 37.9%, 13.0%, and 6.8% carried ermA, msrA, msrB, ermC, and ermB genes, respectively. Among clindamycin-resistant MRSA, 83%, 17%, 10%, 4%, and 2% carried ermA, ermC, ermB, linA, and linB genes, respectively. Among gentamicin-resistant MRSA, 96.8%, 83.9%, and 9.7% carried aac(6')/aph(2''), aph(3')-IIIa, and ant(4')-Ia genes, respectively. Among tetracycline-resistant MRSA, 6.5% and 93.5% carried tetK and tetM genes, respectively. Lastly, among trimethoprim/sulfamethoxazole-resistant MRSA, 13.3% and 100% carried dfrA and dfrG genes, respectively. The SCCmec type IV isolates were detected more frequently, whereas the SCCmec type III isolates exhibited higher multidrug resistance. CONCLUSIONS: The study data provides information regarding the MRSA resistance profile in South Brazil that is associated with the clinical conditions of patients and can contribute to clinical decision-making.


Subject(s)
Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Infective Agents , Staphylococcal Infections/drug therapy , Brazil , Microbial Sensitivity Tests , Hospitals , Anti-Bacterial Agents/pharmacology
7.
Biomolecules ; 9(2)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754716

ABSTRACT

New medicines for the treatment of bacterial biofilm formation are required. For thisreason, this study shows the in vitro activity of betulinic acid (BA), ursolic acid (UA) and their twentyderivatives against planktonic and biofilm cells (gram-positive bacterial pathogens: Enterococcusfaecalis, Staphylococcus aureus and Staphylococcus epidermidis). We evaluated the antibiofilm activity(through the crystal violet method), as well as the antibacterial activity via absorbance (OD600) atconcentrations of 5, 25 and 100 µM. Likewise, the cytotoxicity of all compounds was evaluated on akidney African green monkey (VERO) cell line at the same concentration, by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) methodology. We verified for the first timewhether different groups at carbon 3 (C-3) of triterpenes may interfere in the antibiofilm activity withminimal or no antibacterial effect. After the screening of 22 compounds at three distinctconcentrations, we found antibiofilm activity for eight distinct derivatives without antibiotic effect.In particular, the derivative 2f, with an isopentanoyl ester at position C-3, was an antibiofilm activityagainst S. aureus without any effect upon mammalian cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Triterpenes/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Chlorocebus aethiops , Dose-Response Relationship, Drug , Enterococcus faecalis/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Pentacyclic Triterpenes , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification , Vero Cells , Betulinic Acid , Ursolic Acid
8.
Curr Top Med Chem ; 17(10): 1119-1156, 2017.
Article in English | MEDLINE | ID: mdl-27697042

ABSTRACT

Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Scorpion Venoms/pharmacology , Animals , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bacteria/drug effects , Fungi/drug effects , Humans , Parasites/drug effects , Scorpion Venoms/chemistry , Viruses/drug effects
9.
Mem. Inst. Oswaldo Cruz ; 110(7): 877-883, Nov. 2015. tab, graf
Article in English | LILACS | ID: lil-764587

ABSTRACT

Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalisisolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.


Subject(s)
Animals , Cattle , Female , Humans , Adenosine Deaminase/metabolism , Iron Chelating Agents/pharmacology , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/enzymology , Adenosine Deaminase/drug effects , Gene Expression Regulation, Enzymologic , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trichomonas vaginalis/growth & development
10.
Mem Inst Oswaldo Cruz ; 110(7): 877-83, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26517498

ABSTRACT

Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.


Subject(s)
Adenosine Deaminase/metabolism , Iron Chelating Agents/pharmacology , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/enzymology , Adenosine Deaminase/drug effects , Animals , Cattle , Female , Gene Expression Regulation, Enzymologic , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trichomonas vaginalis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...