Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 105(1-1): 014306, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193208

ABSTRACT

We consider the mean-field analog of the p-star model for homogeneous random networks, and we compare its behavior with that of the p-star model and its classical mean-field approximation in the thermodynamic regime. We show that the partition function of the mean-field model satisfies a sequence of partial differential equations known as the heat hierarchy, and the models connectance is obtained as a solution of a hierarchy of nonlinear viscous PDEs. In the thermodynamic limit, the leading-order solution develops singularities in the space of parameters that evolve as classical shocks regularized by a viscous term. Shocks are associated with phase transitions and stable states are automatically selected consistently with the Maxwell construction. The case p=3 is studied in detail. Monte Carlo simulations show an excellent agreement between the p-star model and its mean-field analog at the macroscopic level, although significant discrepancies arise when local features are compared.

2.
Phys Rev E ; 97(2-1): 022221, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548137

ABSTRACT

We present a general classification of one-soliton solutions as well as families of rogue-wave solutions for F=1 spinor Bose-Einstein condensates (BECs). These solutions are obtained from the inverse scattering transform for a focusing matrix nonlinear Schrödinger equation which models condensates in the case of attractive mean-field interactions and ferromagnetic spin-exchange interactions. In particular, we show that when no background is present, all one-soliton solutions are reducible via unitary transformations to a combination of oppositely polarized solitonic solutions of single-component BECs. On the other hand, we show that when a nonzero background is present, not all matrix one-soliton solutions are reducible to a simple combination of scalar solutions. Finally, by taking suitable limits of all the solutions on a nonzero background we also obtain three families of rogue-wave (i.e., rational) solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...