Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 127(6): 1422-1435, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36740809

ABSTRACT

Chemiluminescence from a system of collisions, N+/N/Kr+/Kr/Xe+/Xe + NH3, at collision energies between 10 and 170 eV (center of mass, COM), was measured in the spectral range 300-1000 nm. The energy dependence of the emission excitation cross sections was quantified, and molecular signatures were fit to known spectroscopic constants to determine vibrational-state populations. For both N and N+ collision species, the strongest features were assigned to emissions from NH (A-X) and the atomic hydrogen Balmer series. For each of the spectra resulting from collisions with primary cations, the NH (A-X) emissions had the largest cross sections reaching values of (1.0-1.5) × 10-18 cm2 by 100 eV. Additional features originating from atomic nitrogen and NH (c-a) emissions were also observed. The NH (c-a) emissions accounted for about 8%, 13%, and 15% for total excited populations in collisions with Xe+, N+, and Kr+, respectively. These transitions were consistent with short-range interactions resulting in collision-induced dissociation of the NH3 molecule with apparent energy thresholds between 20 and 30 eV and emission cross sections decreasing with ion mass. Evidence of charge exchange in the N+ + NH3 collisions was observed in the resulting spectra as broad transitions between 420 and 480 nm and were assigned to NH+ emitting from the (B) state. Differences between the spectra were observed as changes in the emission signal with the neutral collisions producing only 30% or 65% of the NH (A-X) emission cross sections compared to the cation results for xenon and krypton, respectively. For N and N+, NH (A) was created in equal amounts at lower collision energies, but the emission for the neutral system increases above that of the cation at collision energies greater than 80 eV COM. In both cases, the threshold energy for appearance was below 10 eV, suggesting an additional pathway for NH (A) formation, namely, hydrogen abstraction or charge exchange and abstraction for the N and N+, respectively. In all cases, the neutral NH (c-a) emission intensity was similar between neutral and cation pairs. The H-α emission line (n = 3-2) decreased to about 10%, 33%, and 50% of the corresponding cation spectra for xenon, krypton, and nitrogen, respectively.

2.
Phys Chem Chem Phys ; 22(14): 7268-7282, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32207766

ABSTRACT

Emission excitation cross sections are recorded for collisions between Xe2+ + O2 and O+ + Xe over a collision energy range of approximately 2 to 900 eV in the center-of-mass (Ecm) frame. Emissive products of the O+ + Xe reaction are examined in the 700-1000 nm optical range and include neutral atomic oxygen emissions and neutral xenon emissions. Atomic emission products of the O+ + Xe collision appear to have measureable cross sections near Ecm = 14 eV and increase in intensity until about Ecm = 60 eV where they remain approximately constant for the remainder of the measured collision energies. For the Xe2+ + O2 collision system, O2+ charge transfer products are measured through fluorescence of the O2+(A-X) and (b-a) manifolds over the 200-850 nm window. Total cross sections for both manifolds do not vary beyond the experimental precision at all measured energies. Vibrational populations are derived from a fitting of the experimental data. The populations are found to deviate from a Franck-Condon distribution at all collision energies and appear to be well-modeled within a multi-channel Landau-Zener framework over the collision energy range measured.

3.
J Phys Chem A ; 122(8): 1960-1966, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29382196

ABSTRACT

Ionic liquids are used for myriad applications, including as catalysts, solvents, and propellants. Specifically, 2-hydroxyethylhydrazinium nitrate (HEHN) has been developed as a chemical propellant for space applications. The gas-phase behavior of HEHN ions and clusters is important in understanding its potential as an electrospray thruster propellant. Here, the unimolecular dissociation pathways of two clusters are experimentally observed, and theoretical modeling of hydrogen bonding and dissociation pathways is used to help rationalize those observations. The cation/deprotonated cation cluster [HEH2 - H]+, which is observed from electrospray ionization, is calculated to be considerably more stable than the complementary cation/protonated anion adduct, [HEH + HNO3]+, which is not observed experimentally. Upon collisional activation, a larger cluster [(HEHN)2HEH]+ undergoes dissociation via loss of nitric acid at lower collision energies, as predicted theoretically. At higher collision energies, additional primary and secondary loss pathways open, including deprotonated cation loss, ion-pair loss, and double-nitric-acid loss. Taken together, these experimental and theoretical results contribute to a foundational understanding of the dissociation of protic ionic liquid clusters in the gas phase.

4.
J Chem Phys ; 145(4): 044309, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27475363

ABSTRACT

Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe(2+) and N2, in particular, is known to create N2 (+) in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe(2+) + N2 reaction as well as axial recoil velocity distributions of the Xe(+) and N2 (+) product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å(2) to about 40 Å(2) with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe(2+) - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies.

5.
J Chem Phys ; 142(7): 074301, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25702009

ABSTRACT

Growing interest in developing and testing iodine Hall effect thrusters requires measurements of the cross sections of reactions that generate low energy plasma following discharge. Limited experimental and theoretical work necessitates a decisive experiment to elucidate the charge exchange and collision-induced dissociation channels. To this end, we have used guided-ion beam techniques to measure cross sections for both I(+) + I2 and I2 (+)+I2 collisions. We present total collision cross sections as well as collision-induced dissociation cross sections for center-of-mass collision energies ranging from 0.5 to 200 eV for molecular iodine cations. Similarly, we present total collision cross section and charge-exchange cross sections for atomic iodine cations for center-of-mass collision energies ranging from 0.67 to 167 eV. Time-of-flight measurements of the collision products allow determination of velocity distributions, which show evidence of complex formation of I3 (+) from the I(+) + I2 reaction at collision energies below 6 eV.

6.
J Phys Chem A ; 119(2): 352-68, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25562341

ABSTRACT

Atomistic molecular dynamics simulations of small clusters and nanodroplets of the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [EMIM-Tf2N] subject to an external electric field were performed. A 125-ion-pair droplet was found to be nearly spherical with an isotropic distribution of cations and anions under vacuum conditions. The droplet was subjected to external electric fields of varying strength, and ion emission events were observed. The initially spherical droplet is elongated along the electric field axis, resulting in nonspherical behavior and increased net dipole values after the application of strong electric fields. The critical electric field required for ion field emission was determined to be 0.985 V/nm, in agreement with the experimental value of 1.0 V/nm. Excellent agreement is found in the prediction of ionic emission products for a neutral 125-ion-pair droplet of the ionic liquid at an electric field strength of 1.2 V/nm when compared to the results of two independent experiments. Small ionic liquid clusters were investigated with respect to their thermal stabilities and were found to be thermally stable well above room temperature. The role of electric fields in the dissociation of small charged ion clusters was also investigated.

7.
J Chem Phys ; 140(2): 024316, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437886

ABSTRACT

The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

8.
J Chem Phys ; 136(14): 144314, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22502525

ABSTRACT

Luminescence spectra are recorded for the reactions of Xe(+) + NH(3) and Xe(2+) + NH(3) at energies ranging from 11.5 to 206 eV in the center-of-mass (E(cm)) frame. Intense features of the luminescence spectra are attributed to the NH (A (3)Π(i)-X (3)Σ(-)), hydrogen Balmer series, and Xe I emission observable for both primary ions. Evidence for charge transfer products is only found through Xe I emission for both primary ions and NH(+) emission for Xe(2+) primary ions. For both primary ions, the absolute NH (A-X) cross section increases with collision energy before leveling off at a constant value, approximately 9 × 10(-18) cm(2), at about 50 eV while H-α emission increases linearly with collision energy. The nascent NH (A) populations derived from the spectral analysis are found to be independent of collision energy and have a constant rotational temperature of 4200 K.

9.
J Chem Phys ; 135(10): 104308, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21932894

ABSTRACT

Luminescence spectra are recorded for collisions between Xe(+)/Xe(2+) and molecular nitrogen at energies ranging from 4.5 to 316 eV in the center-of-mass frame. In the Xe(+) + N(2) collision system, evidence for luminescent charge-transfer products is only found through Xe I emission lines. The most intense features of the luminescence spectra are attributed to atomic N emissions observed above ∼20 eV. Intense N(2)(+) A (2)Π(u) - X(2)Σ(g)(+) and B(2)Σ(u)(+) - X(2)Σ(g)(+) radiance is observed from Xe(2+) + N(2) collisions. The B state formation cross section decreases with collision energy until 20 eV, after which it becomes independent of impact energy with an approximate value of 3 Å(2). The cross section for N(2) (+) A (ν > 0) formation increases with energy until 20 eV, after which it remains nearly constant at ∼1 Å(2). The N(2)(+) product vibrational distributions extracted from the spectra are non-Franck-Condon for both electronic product states at low collision energies. The distributions resemble a Franck-Condon distribution at the highest energies investigated in this work.

10.
J Phys Chem A ; 113(1): 135-40, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19072170

ABSTRACT

We detail the development of an optical probe technique based on time-resolved Raman-induced Kerr effect polarization spectroscopy (tr-RIKES). This technique, termed fs/ps RIKES, combines an ultrafast pump pulse with a narrowband probe that directly allows spectral resolution of low-frequency (0-600 cm(-1)) modes typically observable via RIKES. The narrowband probe pulse alleviates the need to scan the time delay between pump and probe pulses to observe molecular coherences, thus making this multiplexed technique a convenient probe for studying low-frequency molecular dynamics. An important distinguishing characteristic of this polarization-sensitive technique arises from the fact that the delay between the impulsive pump pulse and the picosecond-duration probe pulse is optimized to maximize suppression of nonresonant background signal. Model systems, including the rotational spectrum of gas-phase hydrogen and the low-frequency vibrational spectrum of neat bromoform, are used to compare fs/ps RIKES with the conventional time-resolved RIKES technique.

11.
J Chem Phys ; 125(4): 44502, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16942151

ABSTRACT

The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.

SELECTION OF CITATIONS
SEARCH DETAIL
...