Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 293(5533): 1310-4, 2001 Aug 17.
Article in English | MEDLINE | ID: mdl-11509729

ABSTRACT

The deployment of electronic data storage tags that are surgically implanted or satellite-linked provides marine researchers with new ways to examine the movements, environmental preferences, and physiology of pelagic vertebrates. We report the results obtained from tagging of Atlantic bluefin tuna with implantable archival and pop-up satellite archival tags. The electronic tagging data provide insights into the seasonal movements and environmental preferences of this species. Bluefin tuna dive to depths of >1000 meters and maintain a warm body temperature. Western-tagged bluefin tuna make trans-Atlantic migrations and they frequent spawning grounds in the Gulf of Mexico and eastern Mediterranean. These data are critical for the future management and conservation of bluefin tuna in the Atlantic.


Subject(s)
Behavior, Animal , Ecosystem , Tuna/physiology , Animal Identification Systems , Animals , Atlantic Ocean , Body Temperature , Conservation of Natural Resources , Diving , Female , Fisheries , Male , Reproduction , Seasons , Swimming , Temperature
2.
Proc Natl Acad Sci U S A ; 95(16): 9384-9, 1998 Aug 04.
Article in English | MEDLINE | ID: mdl-9689089

ABSTRACT

The movements of Atlantic bluefin tuna (Thunnus thynnus thynnus) have captured the interest of scientists and fishers since the time of Aristotle. This tuna is unique among bony fish for maintaining elevated body temperatures (21 degrees C above ambient) and attaining large size (up to 750 kg). We describe here the use of a pop-off satellite tag, for investigating the Atlantic-wide movements and potential stock overlap of western and eastern Atlantic bluefin tuna. The tag also archives data on water temperatures. The objectives of this study were to evaluate the effectiveness of the technology, study the movements of Atlantic bluefin tuna, examine their thermal niche, and assess survivorship of tagged fish. The pop-off satellite technology provides data independent of commercial fisheries that, when deployed in sufficient quantity, should permit a critical test of the stock structure hypotheses for Atlantic bluefin tuna.

SELECTION OF CITATIONS
SEARCH DETAIL