Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809075

ABSTRACT

A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12-1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60-80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0-90%), and their λem peaks were blue shifted.

2.
Molecules ; 25(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456122

ABSTRACT

A series of bis(4-alkoxyphenyl) viologen bis(triflimide) salts with alkoxy chains of different lengths were synthesized by the metathesis reaction of respective bis(4-alkoxyphenyl) viologen dichloride salts, which were in turn prepared from the reaction of Zincke salt with the corresponding 4-n-alkoxyanilines, with lithium triflimide in methanol. Their chemical structures were characterized by 1H and 13C nuclear magnetic resonance spectra and elemental analysis. Their thermotropic liquid-crystalline (LC) properties were examined by differential scanning calorimetry, polarizing optical microscopy, and variable temperature X-ray diffraction. Salts with short length alkoxy chains had crystal-to-liquid transitions. Salts of intermediate length alkoxy chains showed both crystal-to-smectic A (SmA) transitions, Tms, and SmA-to-isotropic transitions, Tis. Those with longer length of alkoxy chains had relatively low Tms at which they formed the SmA phases that persisted up to the decomposition at high temperatures. As expected, all of them had excellent thermal stabilities in the temperature range of 330-370 °C. Their light-emitting properties in methanol were also included.


Subject(s)
Cyclohexanones/chemistry , Liquid Crystals/chemistry , Salts/chemistry , Viologens/chemistry , Calorimetry, Differential Scanning , Light , Magnetic Resonance Spectroscopy , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...